Main Content

Fuzzy Inference System Tuning

Tune membership functions and rules of fuzzy systems

You can tune the membership function parameters and rules of your fuzzy inference system using Global Optimization Toolbox tuning methods such as genetic algorithms and particle swarm optimization. For more information, see Tuning Fuzzy Inference Systems.

If your system is a single-output type-1 Sugeno FIS, you can tune its membership function parameters using neuro-adaptive learning methods. This tuning method does not require Global Optimization Toolbox software. For more information, see Neuro-Adaptive Learning and ANFIS.


Neuro-Fuzzy DesignerDesign, train, and test Sugeno-type fuzzy inference systems


expand all

tunefisTune fuzzy inference system or tree of fuzzy inference systems
tunefisOptionsOption set for tunefis function
getTunableSettingsObtain tunable settings from fuzzy inference system
setTunableSet specified parameter settings as tunable or nontunable
getTunableValuesObtain values of tunable parameters from fuzzy inference system
setTunableValuesSpecify tunable parameter values of a fuzzy inference system
anfisTune Sugeno-type fuzzy inference system using training data
anfisOptionsOption set for anfis command


expand all

RuleSettingsTunable parameter settings of fuzzy rules
VariableSettingsTunable parameter settings of fuzzy variables
MembershipFunctionSettingsTunable parameter settings for fuzzy membership functions
MembershipFunctionSettingsType2Tunable parameter settings for type-2 fuzzy membership functions
ClauseParametersParameter settings for rule clauses
NumericParametersTunable numeric parameter settings of membership functions


Tune Fuzzy Systems

Tuning Fuzzy Inference Systems

Tune fuzzy membership function parameters and learn new fuzzy rules.

Tune Mamdani Fuzzy Inference System

Learn rules and tune membership function parameters for a Mamdani fuzzy system.

Optimize FIS Parameters with k-Fold Cross-Validation

To prevent overfitting during FIS parameter optimization, you can stop the tuning process early based on an unbiased evaluation of the model using validation data.

Tune FIS Tree for Gas Mileage Prediction

Tune the rules and membership function parameters for a tree of interconnected Sugeno fuzzy systems.

Predict Chaotic Time Series Using Type-2 FIS

Tune the rules and membership function parameters for a FIS with type-2 membership functions.

Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function

When you do not have training data, you can tune your fuzzy system using a custom cost function that simulates the FIS operation.

Train ANFIS Systems

Neuro-Adaptive Learning and ANFIS

You can tune Sugeno fuzzy inference systems using neuro-adaptive learning techniques similar to those used for training neural networks.

Train Adaptive Neuro-Fuzzy Inference Systems

Interactively create, train, and test neuro-fuzzy systems using the Neuro-Fuzzy Designer app.

Predict Chaotic Time-Series Using ANFIS

Train a neuro-fuzzy system for time-series prediction using the anfis command.

Adaptive Noise Cancellation Using ANFIS

Perform adaptive nonlinear noise cancellation using the anfis and genfis commands.

Model Suburban Commuting Using Subtractive Clustering and ANFIS

Generate a fuzzy inference system from data using subtractive clustering.

Gas Mileage Prediction

Predict fuel consumption for automobiles using an adaptive neuro-fuzzy inference system and previously recorded observations.

Nonlinear System Identification

You can model nonlinear dynamic system behavior using adaptive neuro-fuzzy systems.

Featured Examples