I doubt you can get an analytical expression for y. All you can do is to transform your 2nd order ODE into a system of first-order ODEs and use a numerical solver to get an approximate solution. Depending on your boundary conditions, you have to use ode45 (if all boundary conditions are given in only one point) or bvp4c (if the boundary conditions are given in different points) to get this solution. Of course, C1 and C2 and the boundary conditions have to be specified as numerical values in this case.