how to simulate mpc controller?

4 views (last 30 days)
Mikail
Mikail on 24 Mar 2025
Commented: Sam Chak on 28 Apr 2025
disp('K matrisi:');
disp(K);
disp('B matrisi:');
disp(B);
disp('A matrisi:');
disp(A);
  2 Comments
Torsten
Torsten on 24 Mar 2025
And what is your specific question ?
Sam Chak
Sam Chak on 25 Mar 2025
When your post was first created, the title was something like "How to simulate LQR controller with ode45?" I am uncertain, but why did you edit the title to "How to simulate MPC controller?"

Sign in to comment.

Accepted Answer

Sam Chak
Sam Chak on 24 Mar 2025
I did not 'beautify' the plot. But the following outlines how you can simulate the LQR-controlled system using the ode45 solver. For simplicity, I used a linear system. While it is also possible to simulate the original nonlinear system, you will need to specify the 12 ODEs individually.
clear all;
clc;
close all;
%---------------------------------Star_X-----------------------------------
%----------------------------- Matematiksel--------------------------------
%-------------------------------modelleme----------------------------------
%--------------------------------------------------------------------------
% **Sayısal değerler**----------------------------------------------------
m_val = 25.0;
Ix_val = 0.25;
Iy_val = 5.28;
Iz_val = 5.28;
theta_val=0;
phi_val=0;
psi_val=0;
g_val = 9.81;
wn_close = 400/2.5;
wn_open = 400/2.5;
dr = 1;
kp=70.779169670332;
ki=40.999999999919;
kd=40.3888999977265;
c=29.33685249238;
d=0;
%--------------------------------------------------------------------------
% **Sembolik değişkenleri tanımla**----------------------------------------
syms u v w p q r phi theta psi Fx Fy Fz L M N t1 t2 t3 h real
syms m Ix Iy Iz g real
syms x1 y1 z1 real
%--------------------------------------------------------------------------
% **Durum değişkenleri**
x = [u; v; w; p; q; r; phi; theta; psi; x1; y1; z1];
% **Girdi vektörü**
u_vec = [Fx; Fy; Fz; L; M; N; t1; t2; t3];
f = [
-g*cos(theta)*cos(psi)+Fx/(m-(0.5*t1 + 0.5*t2 + 0.5*t3))-0.016*u^2-q*w+r*v; %-0.016*(u^2 + v^2 + w^2) - q*w + r*v// (-g*cos(theta)*cos(psi))
-g*(sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi))+(Fy/(m-(0.5*t1 + 0.5*t2 + 0.5*t3)))-0.16*v^2-r*u+ p*w;
-g*(cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi))+(Fz/(m-(0.5*t1 + 0.5*t2 + 0.5*t3)))-0.16*w^2-p*v + q*u;
(L - q*r*(Iz - Iy))/Ix; %- cp*p
(0.16*q^2-M)/Iy; % - cq*q
(0.16*r^2-N)/Iz; % - cr*r
p + (q*sin(phi) + r*cos(phi)) * tan(theta);
q*cos(phi) - r*sin(phi);
(q*sin(phi) + r*cos(phi)) / cos(theta);
u*cos(theta)*cos(psi)+u*cos(theta)*sin(psi)-u*sin(theta);
v*(cos(phi)*cos(psi)-cos(phi)*sin(psi)-sin(psi));
w*(-cos(phi)*cos(theta)+cos(phi)*sin(theta)+sin(phi))
];
% **Jacobian matrislerini hesapla**
A_matrix = jacobian(f, x);
B_matrix = jacobian(f, u_vec);
% **Denge noktaları**
x_equilibrium = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];
u_equilibrium = [0; 0; 0; 0; 0; 0; 0; 0; 0];
% **A ve B matrislerini hesapla**
A_eq = subs(A_matrix, x, x_equilibrium);
A_eq = subs(A_eq, u_vec, u_equilibrium);
A_eq = subs(A_eq, [m, Ix, Iy, Iz, g,phi,theta,psi],[m_val, Ix_val, Iy_val, Iz_val, g_val,phi_val,theta_val,psi_val]);
A = double(A_eq); % Artık tüm değişkenler sayısal, double() çağrılabilir
B_eq = subs(B_matrix, [x; u_vec], [x_equilibrium; u_equilibrium]);
B_eq = subs(B_eq, [m, Ix, Iy, Iz, g,phi,theta,psi],[m_val, Ix_val, Iy_val, Iz_val, g_val,phi_val,theta_val,psi_val]);
B = double(B_eq); % Aynı şekilde B için de double() çağrılabilir
% **Kontrol edilebilirlik matrisi**
controllability = ctrb(A, B);
rank_controllability = rank(controllability);
% **LQR ile Optimal Kontrol Kazancı K Matrisi**
Q = diag([280,14,14,1,6,6,1,1,1,50,115,115]);
R = diag([0.052,0.06,0.06,2,2,2,1,1,1]);
K = lqr(A,B,Q,R);
% **Çıkış ve Direkt Geçiş Matrisleri**
C = eye(12);
D = zeros(12,9);
% **Başlangıç koşulları**
x_init = [0; 0; 0; 0; 0.7; 0.5; 0; 0; 0; 9; 0; 0];
t = 0:0.01:20;
%% ---------------------------------------------------
%% How to simulate the LQR-controlled system using the ode45 solver
%% ---------------------------------------------------
%% system
function dx = ode(t, x, A, B, K)
u = - K*x;
dx = A*x + B*u;
end
%% call ode45
[t, x] = ode45(@(t, x) ode(t, x, A, B, K), t, x_init);
plot(t, x), grid on, xlabel('t')
legend('x_1', 'x_2', 'x_3', 'x_4', 'x_5', 'x_6', 'x_7', 'x_8', 'x_9', 'x_{10}', 'x_{11}', 'x_{12}')
  2 Comments
Sam Chak
Sam Chak on 26 Mar 2025
Since you used my suggested solution in your new post, would you consider clicking 'Accept' ✔ on the Answer to close this topic related to ode45? This will encourage PWM experts to focus on your new question.

Sign in to comment.

More Answers (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!