linearRegressor
Description
A linear regressor is a lagged output or input variable, such as
y(t-1) or
u(t-2). Here, the y term has a lag of
1 sample and the u term has a lag of 2 samples. A
linearRegressor object encapsulates a set of linear regressors. Use
linearRegressor objects when you create nonlinear ARX models using idnlarx or nlarx. linearRegressor
generalizes the concept of orders in ARX models, or in other words, the
[na nb nk] matrix, to allow absolute values and noncontiguous lags. Using
linearRegressor objects also lets you combine linear regressors with
polynomialRegressor,
periodicRegressor,
and customRegressor
objects in a single regressor set.
Creation
Description
specifies in lreg = linearRegressor(Variables,Lags,useAbsolute)UseAbsolute whether to use the absolute values of the
variables to create the regressors.
Properties
Examples
Version History
Introduced in R2021a
See Also
idnlarx | nlarx | getreg | polynomialRegressor | periodicRegressor | customRegressor
