Plotting the Efficient Frontier for a PortfolioCVaR Object
The plotFrontier
function creates a plot of
the efficient frontier for a given portfolio optimization problem. This function accepts
several types of inputs and generates a plot with an optional possibility to output the
estimates for portfolio risks and returns along the efficient frontier. plotFrontier
has four different ways that it can be used. In addition to
a plot of the efficient frontier, if you have an initial portfolio in the
InitPort
property, plotFrontier
also displays the return versus risk of the initial
portfolio on the same plot. If you have a well-posed portfolio optimization problem set
up in a PortfolioCVaR
object and you use plotFrontier
, you get a plot of the efficient frontier with the default
number of portfolios on the frontier (the default number is currently
10
and is maintained in the hidden property
defaultNumPorts
). This example illustrates a typical use of
plotFrontier
to create a new plot:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; m = m/12; C = C/12; AssetScenarios = mvnrnd(m, C, 20000); p = PortfolioCVaR; p = setScenarios(p, AssetScenarios); p = setDefaultConstraints(p); p = setProbabilityLevel(p, 0.95); plotFrontier(p)
The Name
property appears as the title of the efficient frontier
plot if you set it in the PortfolioCVaR
object. Without an explicit
name, the title on the plot would be “Efficient Frontier.” If you want to
obtain a specific number of portfolios along the efficient frontier, use plotFrontier
with the number of portfolios that you want. Suppose that
you have the PortfolioCVaR
object from the previous example and you
want to plot 20 portfolios along the efficient frontier and to obtain 20 risk and return
values for each portfolio:
[prsk, pret] = plotFrontier(p, 20); display([pret, prsk])
ans = 0.0051 0.0406 0.0056 0.0414 0.0061 0.0437 0.0066 0.0471 0.0071 0.0515 0.0076 0.0567 0.0082 0.0624 0.0087 0.0687 0.0092 0.0753 0.0097 0.0821 0.0102 0.0891 0.0107 0.0962 0.0112 0.1044 0.0117 0.1142 0.0122 0.1251 0.0127 0.1369 0.0133 0.1496 0.0138 0.1628 0.0143 0.1766 0.0148 0.1907
Plotting Existing Efficient Portfolios
If you already have efficient portfolios from any of the "estimateFrontier"
functions (see Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object), pass them into
plotFrontier
directly to plot the
efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; m = m/12; C = C/12; AssetScenarios = mvnrnd(m, C, 20000); pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = PortfolioCVaR('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0); p = setScenarios(p, AssetScenarios); p = setDefaultConstraints(p); p = setProbabilityLevel(p, 0.95); pwgt = estimateFrontier(p, 20); plotFrontier(p, pwgt)
Plotting Existing Efficient Portfolio Risks and Returns
If you already have efficient portfolio risks and returns, you can use the
interface to plotFrontier
to pass them into
plotFrontier
to obtain a plot of
the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; AssetScenarios = mvnrnd(m, C, 20000); pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = PortfolioCVaR('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0); p = setScenarios(p, AssetScenarios); p = setDefaultConstraints(p); p = setProbabilityLevel(p, 0.95); pwgt = estimateFrontier(p); pret= estimatePortReturn(p, pwgt); prsk = estimatePortRisk(p, pwgt); plotFrontier(p, prsk, pret)
See Also
PortfolioCVaR
| estimatePortReturn
| plotFrontier
| estimatePortStd
| estimatePortVaR
Related Examples
- Estimate Efficient Frontiers for PortfolioCVaR Object
- Creating the PortfolioCVaR Object
- Working with CVaR Portfolio Constraints Using Defaults
- Asset Returns and Scenarios Using PortfolioCVaR Object
- Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object
- Postprocessing Results to Set Up Tradable Portfolios
- Hedging Using CVaR Portfolio Optimization
- Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio