obtaining large numbers while using syms
44 views (last 30 days)
Show older comments
Hello, I have a matrix which vontains symbols:
kesi_eta=[1/sqrt(3) 1/sqrt(3)
-1/sqrt(3) 1/sqrt(3)
-1/sqrt(3) -1/sqrt(3)
1/sqrt(3) -1/sqrt(3)];
Kij_new=0;
for i=1:4
kesi=kesi_eta(i,1);
eta=kesi_eta(i,2);
B=(1/4).*[1+eta 0 -1-eta 0 -1+eta 0 1-eta 0
0 1+kesi 0 1-kesi 0 -1+kesi 0 -1-kesi
1+kesi 1+eta 1-kesi -1-eta -1+kesi -1+eta -1-kesi 1-eta];
J=[Lx/2 0
0 Ly/2];
Bhat=(1/(2*Lx*Ly)).*[Ly*(1+eta) 0 -Ly*(1+eta) 0 -Ly*(1-eta) 0 Ly*(1-eta) 0
0 Lx*(1+kesi) 0 Lx*(1-kesi) 0 -Lx*(1-kesi) 0 -Lx*(1+kesi)
Lx*(1+kesi) Ly*(1+eta) Lx*(1-kesi) -Ly*(1+eta) -Lx*(1-kesi) -Ly*(1-eta) -Lx*(1+kesi) Ly*(1-eta)];
D_red=[1/E -v/E 0;
-v/E 1/E 0;
0 0 1/G];
C=D_red^-1;
Kij=Bhat.'*C*Bhat*h*det(J);
Kij1=Kij;
Kij_old=Kij_new+Kij1;
Kij_new=Kij_old;
end
and the out put gives me very large numbers without simplification.even when I use function simplify(), I face these numbers:
[ (72115234146317045769238718114163*E*h*(9*v - 17))/(2596148429267413814265248164610048*(v^2 - 1)), -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), (3*E*h*(13521606402434444180830355908725*v + 10516804979671237742249216795996))/(324518553658426726783156020576256*(v^2 - 1)), -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), -(4507202134144814726943451969575*E*h*(9*v - 17))/(324518553658426726783156020576256*(v^2 - 1)), (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), -(3*E*h*(216345702438951137307716154342489*v - 120192056910528423132922512324889))/(2596148429267413814265248164610048*(v^2 - 1)), (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1))]
[ -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), (72115234146317045769238718114163*E*h*(2*v - 11))/(1298074214633706907132624082305024*(v^2 - 1)), (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), -(3*E*h*(24038411382105681923079572704721*v + 30048014227632094800241850930179))/(649037107316853453566312041152512*(v^2 - 1)), (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), -(4507202134144814726943451969575*E*h*(2*v - 11))/(162259276829213363391578010288128*(v^2 - 1)), -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (3*E*h*(24038411382105678543698410504400*v + 192307291056845458764017743838089))/(1298074214633706907132624082305024*(v^2 - 1))]
[ (3*E*h*(13521606402434444180830355908725*v + 10516804979671237742249216795996))/(324518553658426726783156020576256*(v^2 - 1)), (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (72115234146317045769238718114163*E*h*(9*v - 17))/(2596148429267413814265248164610048*(v^2 - 1)), (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), -(3*E*h*(216345702438951137307716154342489*v - 120192056910528423132922512324889))/(2596148429267413814265248164610048*(v^2 - 1)), -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), -(4507202134144814726943451969575*E*h*(9*v - 17))/(324518553658426726783156020576256*(v^2 - 1)), -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1))]
[ -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), -(3*E*h*(24038411382105681923079572704721*v + 30048014227632094800241850930179))/(649037107316853453566312041152512*(v^2 - 1)), (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), (72115234146317045769238718114163*E*h*(2*v - 11))/(1298074214633706907132624082305024*(v^2 - 1)), (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (3*E*h*(24038411382105678543698410504400*v + 192307291056845458764017743838089))/(1298074214633706907132624082305024*(v^2 - 1)), -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), -(4507202134144814726943451969575*E*h*(2*v - 11))/(162259276829213363391578010288128*(v^2 - 1))]
[ -(4507202134144814726943451969575*E*h*(9*v - 17))/(324518553658426726783156020576256*(v^2 - 1)), (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), -(3*E*h*(216345702438951137307716154342489*v - 120192056910528423132922512324889))/(2596148429267413814265248164610048*(v^2 - 1)), (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (72115234146317045769238718114163*E*h*(9*v - 17))/(2596148429267413814265248164610048*(v^2 - 1)), -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), (3*E*h*(13521606402434444180830355908725*v + 10516804979671237742249216795996))/(324518553658426726783156020576256*(v^2 - 1)), -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1))]
[ (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), -(4507202134144814726943451969575*E*h*(2*v - 11))/(162259276829213363391578010288128*(v^2 - 1)), -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (3*E*h*(24038411382105678543698410504400*v + 192307291056845458764017743838089))/(1298074214633706907132624082305024*(v^2 - 1)), -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), (72115234146317045769238718114163*E*h*(2*v - 11))/(1298074214633706907132624082305024*(v^2 - 1)), (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), -(3*E*h*(24038411382105681923079572704721*v + 30048014227632094800241850930179))/(649037107316853453566312041152512*(v^2 - 1))]
[ -(3*E*h*(216345702438951137307716154342489*v - 120192056910528423132922512324889))/(2596148429267413814265248164610048*(v^2 - 1)), -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), -(4507202134144814726943451969575*E*h*(9*v - 17))/(324518553658426726783156020576256*(v^2 - 1)), -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), (3*E*h*(13521606402434444180830355908725*v + 10516804979671237742249216795996))/(324518553658426726783156020576256*(v^2 - 1)), (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (72115234146317045769238718114163*E*h*(9*v - 17))/(2596148429267413814265248164610048*(v^2 - 1)), (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1))]
[ (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (3*E*h*(24038411382105678543698410504400*v + 192307291056845458764017743838089))/(1298074214633706907132624082305024*(v^2 - 1)), -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), -(4507202134144814726943451969575*E*h*(2*v - 11))/(162259276829213363391578010288128*(v^2 - 1)), -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), -(3*E*h*(24038411382105681923079572704721*v + 30048014227632094800241850930179))/(649037107316853453566312041152512*(v^2 - 1)), (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), (72115234146317045769238718114163*E*h*(2*v - 11))/(1298074214633706907132624082305024*(v^2 - 1))]
Can someone pleaaase help me? I have even used vpa() and still the problem has not been fixed
thank you
1 Comment
Walter Roberson
on 31 Dec 2020
Sqrt = @(x) sqrt(sym(x)) ;
kesi_eta=[1/Sqrt(3) 1/Sqrt(3)
-1/Sqrt(3) 1/Sqrt(3)
-1/Sqrt(3) -1/Sqrt(3)
1/Sqrt(3) -1/Sqrt(3)];
Answers (2)
Walter Roberson
on 31 Dec 2020
%variables user did not define. Give them a definite value.
h = sym(5/3); E = sym(10000); v = sym(123); Lx = sym(28); Ly = sym(18); G = sym(42);
%proceed
Sqrt = @(x) sqrt(sym(x)) ;
kesi_eta=[1/Sqrt(3) 1/Sqrt(3)
-1/Sqrt(3) 1/Sqrt(3)
-1/Sqrt(3) -1/Sqrt(3)
1/Sqrt(3) -1/Sqrt(3)];
Kij_new=0;
for i=1:4
kesi=kesi_eta(i,1);
eta=kesi_eta(i,2);
B=(1/4).*[1+eta 0 -1-eta 0 -1+eta 0 1-eta 0
0 1+kesi 0 1-kesi 0 -1+kesi 0 -1-kesi
1+kesi 1+eta 1-kesi -1-eta -1+kesi -1+eta -1-kesi 1-eta];
J=[Lx/2 0
0 Ly/2];
Bhat=(1/(2*Lx*Ly)).*[Ly*(1+eta) 0 -Ly*(1+eta) 0 -Ly*(1-eta) 0 Ly*(1-eta) 0
0 Lx*(1+kesi) 0 Lx*(1-kesi) 0 -Lx*(1-kesi) 0 -Lx*(1+kesi)
Lx*(1+kesi) Ly*(1+eta) Lx*(1-kesi) -Ly*(1+eta) -Lx*(1-kesi) -Ly*(1-eta) -Lx*(1+kesi) Ly*(1-eta)];
D_red=[1/E -v/E 0;
-v/E 1/E 0;
0 0 1/G];
C=D_red^-1;
Kij=Bhat.'*C*Bhat*h*det(J);
Kij1=Kij;
Kij_old=Kij_new+Kij1;
Kij_new=Kij_old;
end
simplify(Kij_new)
0 Comments
Ameer Hamza
on 31 Dec 2020
Specify the number of digits in vpa() to
vpa(x, 4)
2 Comments
Ameer Hamza
on 31 Dec 2020
What type of simplification do you want? The polynomials in numerators or denominators cannot be further simplified.
See Also
Categories
Find more on Common Weakness Enumeration (CWE) in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!