Time series training using 2D CNN

6 views (last 30 days)
igor Lisogursky
igor Lisogursky on 23 Sep 2020
Commented: igor Lisogursky on 9 Oct 2020
Hi ,
I am trying to use 2D CNN to train and then predict time series (specifically analog signal splitted into 5 samples each sequence ---> the whole input matrix is Nx5) ...
Though i defined 4d matrices XTrain and YTrain for trainNetwork() function as follows :
... COMMENTS ...
I defently defined 4d matrix with images 1xchannel_length but still getting the error below :
"
>> MatlabNnPilot
155 net = trainNetwork(XTrain,YTrain,layers,options);
Error using trainNetwork (line 165)
Invalid training data. X must be a 4-D array of images.
Error in MatlabNnPilot (line 155)
net = trainNetwork(XTrain,YTrain,layers,options);
"
Please advise how to resovle it if possible ?
Igor
  1 Comment
igor Lisogursky
igor Lisogursky on 27 Sep 2020
As well attaching here the sizes of XTrain and YTrain from the same code :

Sign in to comment.

Answers (1)

Srivardhan Gadila
Srivardhan Gadila on 28 Sep 2020
I tried the following code which is written based on the above mentioned code & I'm not getting any errors. You can refer to the net = trainNetwork(X,Y,layers,options) syntax and also it's corresponding Input Arguments description.
Try checking the following code once:
input_size = 5;
output_size = 1;
numHiddenUnits = 32;
epochs = 50;
nTrainSamples = 40725;
layers = [ ...
imageInputLayer([1 input_size 1],'Name','input')
convolution2dLayer([1 input_size],1,'Name','conv')
batchNormalizationLayer('Name','bn')
reluLayer('Name','relu')
fullyConnectedLayer(output_size, 'Name','fc')
regressionLayer('Name','regression')];
% lgraph = layerGraph(layers);
% analyzeNetwork(layers)
%%
trainData = randn([1 5 1 nTrainSamples]);
% trainLabels = randn(nTrainSamples,numClasses);
trainLabels = randn([1 1 1 nTrainSamples]);
size(trainData)
size(trainLabels)
%%
options = trainingOptions('adam', ...
'InitialLearnRate',0.005, ...
'ValidationData',{trainData,trainLabels},...
'LearnRateSchedule','piecewise',...
'MaxEpochs',epochs, ...
'MiniBatchSize',32, ...
'Verbose',1, ...
'Plots','training-progress');
net = trainNetwork(trainData,trainLabels,layers,options);
  5 Comments
Srivardhan Gadila
Srivardhan Gadila on 6 Oct 2020
@igor Lisogursky, you can verify the same by creating your network and using analyzeNetwork function to view the shape of the activations after each layer.
igor Lisogursky
igor Lisogursky on 9 Oct 2020
Thanks @Srivardhan Gadila for a responde it will be usefull func

Sign in to comment.

Categories

Find more on Deep Learning Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!