Hello, how to solve this equation E*I*k^4-m*v^2*k^2+2*m*v*w*k+(m+M)w^2=0 numerically where w is variable,
    3 views (last 30 days)
  
       Show older comments
    
    shoaib Shoaib
 on 10 Dec 2019
  
    
    
    
    
    Commented: shoaib Shoaib
 on 12 Dec 2019
            can we solve this for k numerically, sorry this is fourth  order equation not two order 
Thanks
0 Comments
Accepted Answer
  Star Strider
      
      
 on 10 Dec 2019
        
      Edited: Star Strider
      
      
 on 10 Dec 2019
  
      Supply all the scalar parameters, then: 
Eqn = @(w) E*I*k^2-m*v^2*k^2+2*m*v*w*k+(m+M)w^2;
w0 = 42;
[w,fval] = fsolve(Eqn, w0)
Experiment with the correct value of ‘w0’ to get the correct result.  
EDIT — (Dec 10 2019 at 13:18) 
The Symbolic Math Toolbox produces: 
w = (k*(- E*I*k^2*m - E*I*M*k^2 + 2*m^2*v^2 + M*m*v^2)^(1/2) - k*m*v)/(M + m)
or to calculate both roots: 
w = [(k*(- E*I*k^2*m - E*I*M*k^2 + 2*m^2*v^2 + M*m*v^2)^(1/2) - k*m*v)/(M + m)
     -(k*(- E*I*k^2*m - E*I*M*k^2 + 2*m^2*v^2 + M*m*v^2)^(1/2) - k*m*v)/(M + m)]
11 Comments
  Walter Roberson
      
      
 on 12 Dec 2019
				syms E I k m v w M
Eqn =  E*I*k^4-m*v^2*k^2+2*m*v*w*k+(m+M)*w^2
sol_exact = solve(Eqn, k, 'MaxDegree', 4);   %valid for symbolic variables, gives LONG exact solutions
sol_numeric = vpasolve(Eqn, k);   %valid only if numeric values are known for everything except k, gives numeric solutions
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

