eigen values of genralised symbolic matrix
12 views (last 30 days)
Show older comments
Can we find out eigen values of genralised symbolic matrix like AX = LBX?, where A and B are matrix and L is eigen value
1 Comment
Torsten
on 5 Feb 2019
Eigenvalues are zeros of the polynomial equation p(x)=det(A-x*B)=0. Thus if A has at most size (4x4), you can in principle symbolically determine the eigenvalues. But I wouldn't recommend this since the expressions for the polynomial and its associated roots will be nasty.
Accepted Answer
More Answers (1)
John D'Errico
on 5 Feb 2019
How large is your matrix? Note that computing the eigenvalues of an nxn matrix is mathematically equivalent to a problem of finding the roots of a nth degree polynomial. Even in the generalized eigenvalue problem, that issue still must apply.
But for a polynomial of degree greater than 4, that is provably impossible to do in general for a polynomial of degree >= 5. (Talk to Abel & Ruffini if you have complaints. They are dead of course, so the compaints desk is hard to get to, and they never answer the phone.)
A problem of course is that sym/eig does not handle the generalized eigenvalue problem. But you could still do this:
A = sym(randi(5,[3,3]))
A =
[ 3, 3, 2]
[ 3, 1, 1]
[ 4, 2, 3]
syms x
A(1) = x;
B = sym(magic(3));
eig(inv(B)*A)
ans =
(53*x)/1080 + (((x/720 - ((53*x)/360 - 103/360)^3/27 + ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 - 11/720)^2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)^3)^(1/2) - x/720 + ((53*x)/360 - 103/360)^3/27 - ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 + 11/720)^(1/3) + (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)/(((x/720 - ((53*x)/360 - 103/360)^3/27 + ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 - 11/720)^2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)^3)^(1/2) - x/720 + ((53*x)/360 - 103/360)^3/27 - ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 + 11/720)^(1/3) - 103/1080
(53*x)/1080 - (((x/720 - ((53*x)/360 - 103/360)^3/27 + ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 - 11/720)^2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)^3)^(1/2) - x/720 + ((53*x)/360 - 103/360)^3/27 - ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 + 11/720)^(1/3)/2 - (3^(1/2)*((((x/720 - ((53*x)/360 - 103/360)^3/27 + ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 - 11/720)^2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)^3)^(1/2) - x/720 + ((53*x)/360 - 103/360)^3/27 - ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 + 11/720)^(1/3) - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)/(((x/720 - ((53*x)/360 - 103/360)^3/27 + ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 - 11/720)^2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)^3)^(1/2) - x/720 + ((53*x)/360 - 103/360)^3/27 - ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 + 11/720)^(1/3))*1i)/2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)/(2*(((x/720 - ((53*x)/360 - 103/360)^3/27 + ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 - 11/720)^2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)^3)^(1/2) - x/720 + ((53*x)/360 - 103/360)^3/27 - ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 + 11/720)^(1/3)) - 103/1080
(53*x)/1080 - (((x/720 - ((53*x)/360 - 103/360)^3/27 + ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 - 11/720)^2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)^3)^(1/2) - x/720 + ((53*x)/360 - 103/360)^3/27 - ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 + 11/720)^(1/3)/2 + (3^(1/2)*((((x/720 - ((53*x)/360 - 103/360)^3/27 + ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 - 11/720)^2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)^3)^(1/2) - x/720 + ((53*x)/360 - 103/360)^3/27 - ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 + 11/720)^(1/3) - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)/(((x/720 - ((53*x)/360 - 103/360)^3/27 + ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 - 11/720)^2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)^3)^(1/2) - x/720 + ((53*x)/360 - 103/360)^3/27 - ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 + 11/720)^(1/3))*1i)/2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)/(2*(((x/720 - ((53*x)/360 - 103/360)^3/27 + ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 - 11/720)^2 - (((53*x)/360 - 103/360)^2/9 - x/180 + 7/90)^3)^(1/2) - x/720 + ((53*x)/360 - 103/360)^3/27 - ((x/60 - 7/30)*((53*x)/360 - 103/360))/6 + 11/720)^(1/3)) - 103/1080
0 Comments
See Also
Categories
Find more on Linear Algebra in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!