Problems solving cupled 2nd Order ODE with od45
3 views (last 30 days)
Show older comments
Hello.
I am given the task of simulating the two-dimensional motion of a magnetic pendulum in the x-y-plane. The problem comes down in solving this system of cupled 2nd order ordinary differential equation:
x'' + R*x' + sum_{i=1}^3 (m_i-x)/(sqrt((m1_i-x)^2 + (m2_i-y)^2 + d^2))^3 + G*x == 0
y'' + R*y' + sum_{i=1}^3 (m_i-y)/(sqrt((m1_i-x)^2 + (m2_i-y)^2 + d^2))^3 + G*y == 0
Those eqations discribe the motion in the plane. I know i can use the method "ode45" to solve such a problem, given some initial values.
I have tried it a few times, but didn't came to a solution.
I hope someone can help me. (x',y') = 0 no initial velocity and position (x,y) could be anywhere.
GREETINGS
4 Comments
Answers (2)
Torsten
on 29 Nov 2017
M=@(t,y)[y(2);-R*y(2)+((mag1(1)-y(1))/(sqrt((mag1(1)-y(1))^2+(mag1(2)-y(3))^2+(mag1(3))^2)^3)+(mag2(1)-y(1))/(sqrt((mag2(1)-y(1))^2+(mag2(2)-y(3))^2+(mag2(3))^2)^3)+(mag3(1)-y(1))/(sqrt((mag3(1)-y(1))^2+(mag3(2)-y(3))^2+(mag3(3))^2)^3) )-C*y(1);y(4);-R*y(4)+((mag1(2)-y(3))/(sqrt((mag1(1)-y(1))^2+(mag1(2)-y(3))^2+(mag1(3))^2)^3) +(mag2(2)-y(3))/(sqrt((mag2(1)-y(1))^2+(mag2(2)-y(3))^2+(mag2(3))^2)^3) +(mag3(2)-y(3))/(sqrt((mag3(1)-y(1))^2+(mag3(2)-y(3))^2+(mag3(3))^2)^3) ) -C*y(3)];
Interval=[0 20];
Conditions = [x; dx/dt; y ; dy/dt] at t=0 ??
Solution = ode45(M,Interval,Conditions);
Best wishes
Torsten.
6 Comments
Steven Lord
on 29 Nov 2017
Consider specifying the 'OutputFcn' option in your ode45 call as part of the options structure created by the odeset function. There are a couple of output functions included with MATLAB (the description of the OutputFcn option on that documentation page lists them) and I suspect one of odeplot, odephas2, or odephas3 will be of use to you.
Dariusz Skibicki
on 16 Mar 2023
Replace
V = odeToVectorField(ode1);
with
V = odeToVectorField(odes);
1 Comment
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!