How to use this probability distribution?
5 views (last 30 days)
Show older comments
I have this probability distribution: Pi=1/(1+(i/31)^2,6) (Pi is the probability of i happens). But, how can I use this probability (Pi) for generate a random value? Which function I should use?
5 Comments
Answers (2)
John BG
on 26 Apr 2016
Edited: John BG
on 26 Apr 2016
1.- it's good practice to avoid giving names to variables that are reserved for constants, like pi, so let me call the probability simply p, ok?
2.- when trying your function:
i=[0:10];p=1/(1+(i/31)^2,6)
errors happen,
so again let me modify the function you want to turn into a probability function, as follows:
i=[0:10];p=1./(1+(i/31).^2.6)
3.- with
i=[1:100]
format long
sum(p)
=
36.661222264870894
so a straight forward way to turn this into a probability density function is to divide all possibilities by
i=[1:100];
p=1./(1+(i/31).^2.6);
P0=sum(p);
p1=1/P0*(1./(1+(i/31).^2.6));
now
sum(p1)
=
0.999999999999999
sum(p1) should be exactly 1.
4.- Because the exponent of i is larger than 2, the sum of the series converges as i gets away heading to +Inf.
One way to include all possible positive values of i [1,Inf] is
syms k
f=1./(1+(k/31).^2.6)
int(f,k)
=
(155*log((244140625*31^(4/5)*k^(1/5))/31 + 244140625))/13 + (155*exp((pi*2i)/13)*log(1650390625*exp((pi*3i)/13) - (1650390625*31^(4/5)*k^(1/5))/31))/13 - (155*exp((pi*5i)/13)*log(1650390625*exp((pi*1i)/13) - (1650390625*31^(4/5)*k^(1/5))/31))/13 - (155*exp((pi*1i)/13)*log(1650390625*exp((pi*8i)/13) + (1650390625*31^(4/5)*k^(1/5))/31))/13 + (155*exp((pi*4i)/13)*log(1650390625*exp((pi*6i)/13) + (1650390625*31^(4/5)*k^(1/5))/31))/13 - (155*exp((pi*7i)/13)*log(1650390625*exp((pi*4i)/13) + (1650390625*31^(4/5)*k^(1/5))/31))/13 + (155*exp((pi*10i)/13)*log(1650390625*exp((pi*2i)/13) + (1650390625*31^(4/5)*k^(1/5))/31))/13 - (155*exp((pi*3i)/13)*log(1650390625*exp((pi*11i)/13) - (1650390625*31^(4/5)*k^(1/5))/31))/13 + (155*exp((pi*6i)/13)*log(1650390625*exp((pi*9i)/13) - (1650390625*31^(4/5)*k^(1/5))/31))/13 - (155*exp((pi*9i)/13)*log(1650390625*exp((pi*7i)/13) - (1650390625*31^(4/5)*k^(1/5))/31))/13 + (155*exp((pi*12i)/13)*log(1650390625*exp((pi*5i)/13) - (1650390625*31^(4/5)*k^(1/5))/31))/13 + (155*exp((pi*8i)/13)*log(1650390625*exp((pi*12i)/13) + (1650390625*31^(4/5)*k^(1/5))/31))/13 - (155*exp((pi*11i)/13)*log(1650390625*exp((pi*10i)/13) + (1650390625*31^(4/5)*k^(1/5))/31))/13
your probability density function has as primitive, so let's integrate:
double(int(1/((k/31)^(13/5) + 1),1,Inf))
=
39.060785674272687 - 0.000000000000000i
5.- one candidate to the probability density function you are after would be
P0=39.060785674272687
p=1/P0;1./(1+(i/31).^2.6)
for any positive integer >0, the range being
[1,Inf]
If you find this answer of any help solving your question,
please click on the thumbs-up vote link,
thanks in advance
John
Image Analyst
on 26 Apr 2016
You need to use inverse transform sampling. https://en.wikipedia.org/wiki/Inverse_transform_sampling
I've attached an example where I use that method for the Rayleigh distribution. If you don't know the analytical formula for the CDF, you could always construct the digital PDF and then use cumsum() to get the CDF.
0 Comments
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!