lsqcurvefit Surface Fitting Troubleshooting

12 views (last 30 days)
I am trying to write a script that fits any given surface using 2D polynomials. I am following the answer given in:
I am testing this by creating a surface using known polynomial coefficients, and then I can see if my script comes up with the correct coefficients through fitting it. Right now I'm using 9 coefficients. It seems my fitting works for the first three coefficients, but it ignores coefficients four through nine, and I cannot figure out why.
%% Setup
x = linspace(-100,100);
y = linspace(-100,100);
[X, Y] = meshgrid(x,y);
XY(:,:,1) = X; XY(:,:,2) = Y;
C = [1 0 1 1 0 0 0 0 0]; %coefficients solution
Degree = 3;
Z = zeros(size(X)); %create original surface
idx = 1;
%define Z
for j = 1:Degree
for k = 0:j
Z = Z + C(idx) * (X.^(j-k)) .* (Y.^k);
idx = idx+1;
end
end
%% Surface fitting
% (from https://www.mathworks.com/matlabcentral/answers/119001-2d-data-fitting-surface)
poly_fun = @(c,XY) c(1)*XY(:,:,1).^1 + c(2)*XY(:,:,2).^1 + c(3)*XY(:,:,1).^2 + c(4)*XY(:,:,1).^1*XY(:,:,2).^1 + c(5)*XY(:,:,2).^2 + c(6)*XY(:,:,1).^3 + c(7)*XY(:,:,1).^2*XY(:,:,2).^1 + c(8)*XY(:,:,1).^1*XY(:,:,2).^2 + c(9)*XY(:,:,2).^3;
Cfit = lsqcurvefit(poly_fun, zeros(1,length(C)), XY, Z);
Zfit = zeros(size(X)); %Create fitted surface
idx = 1;
for j = 1:Degree
for k = 0:j
Zfit = Zfit + Cfit(idx) * (X.^(j-k)) .* (Y.^k);
idx = idx+1;
end
end
%% Plotting
figure
surf(Z,'LineStyle','none')
title('Original Surface')
figure
surf(Zfit,'LineStyle','none')
title('Polynomial Fit Surface')

Accepted Answer

Torsten
Torsten on 25 Mar 2025
Edited: Torsten on 25 Mar 2025
There is a problem with your "poly_fun". You have to use
poly_fun = @(c,XY) c(1)*XY(:,:,1).^1 + c(2)*XY(:,:,2).^1 + c(3)*XY(:,:,1).^2 + c(4)*XY(:,:,1).^1.*XY(:,:,2).^1 + c(5)*XY(:,:,2).^2 + c(6)*XY(:,:,1).^3 + c(7)*XY(:,:,1).^2.*XY(:,:,2).^1 + c(8)*XY(:,:,1).^1.*XY(:,:,2).^2 + c(9)*XY(:,:,2).^3;
instead of
poly_fun = @(c,XY) c(1)*XY(:,:,1).^1 + c(2)*XY(:,:,2).^1 + c(3)*XY(:,:,1).^2 + c(4)*XY(:,:,1).^1*XY(:,:,2).^1 + c(5)*XY(:,:,2).^2 + c(6)*XY(:,:,1).^3 + c(7)*XY(:,:,1).^2*XY(:,:,2).^1 + c(8)*XY(:,:,1).^1*XY(:,:,2).^2 + c(9)*XY(:,:,2).^3;
But this is a linear fitting problem in the coefficients c(1),...,c(9). Thus a nonlinear fitting tool like "lsqcurvefit" is not needed - you can simply use backslash (see the last 5 lines of the following code).
%% Setup
x = linspace(-100,100);
y = linspace(-100,100);
[X, Y] = meshgrid(x,y);
XY(:,:,1) = X; XY(:,:,2) = Y;
C = [1 0 1 1 0 0 0 0 0]; %coefficients solution
Degree = 3;
Z = zeros(size(X)); %create original surface
idx = 1;
%define Z
for j = 1:Degree
for k = 0:j
Z = Z + C(idx) * (X.^(j-k)) .* (Y.^k);
idx = idx+1;
end
end
%% Surface fitting
% (from https://www.mathworks.com/matlabcentral/answers/119001-2d-data-fitting-surface)
poly_fun = @(c,XY) c(1)*XY(:,:,1).^1 + c(2)*XY(:,:,2).^1 + c(3)*XY(:,:,1).^2 + c(4)*XY(:,:,1).^1.*XY(:,:,2).^1 + c(5)*XY(:,:,2).^2 + c(6)*XY(:,:,1).^3 + c(7)*XY(:,:,1).^2.*XY(:,:,2).^1 + c(8)*XY(:,:,1).^1.*XY(:,:,2).^2 + c(9)*XY(:,:,2).^3;
Cfit = lsqcurvefit(poly_fun, zeros(1,length(C)), XY, Z);
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
Zfit = zeros(size(X)); %Create fitted surface
idx = 1;
for j = 1:Degree
for k = 0:j
Zfit = Zfit + Cfit(idx) * (X.^(j-k)) .* (Y.^k);
idx = idx+1;
end
end
%% Plotting
figure
surf(Z,'LineStyle','none')
title('Original Surface')
figure
surf(Zfit,'LineStyle','none')
title('Polynomial Fit Surface')
X = X(:);
Y = Y(:);
Z = Z(:);
M = [X,Y,X.^2,X.*Y,Y.^2,X.^3,X.^2.*Y,X.*Y.^2,Y.^3];
c = M\Z
c = 9×1
1.0000 -0.0000 1.0000 1.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

More Answers (0)

Categories

Find more on Fit Postprocessing in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!