Validation of MATLAB Electric vehicle model by using IPG CarMaker

4 views (last 30 days)
I have already created a 8-DOF electric vehicle model in MATLAB and during the verification method, I noticed that the roll angle does not really align with the data from CarMaker. I would like to seek for the oppinion from this community on how to improve the graph that I have obtained. I have also attatched the parameters of this vehicle as well as the graph that I have obtained. The blue plots indicates the data from a real world based electric model from CarMaker and yellow is from the 8-DOF model in matlab.
these are the vehicle parameters
data.g = 9.81; % [m/s^2] acceleration of gravity
data.f_res = 1.1e-2; % [-] rolling friction parameter
data.k_res = 6.5e-7; % [s^2/m^2] rolling friction coefficient
data.rho = 1.205; % [kg/m^3] air density
data.area = 2.156; % [m^2] cross section
data.cx = 0.30; % [-] drag coefficient
data.mass = 2200.10; % [kg] total vehicle mass
data.Jx = 552.75; % [kg*m^2] roll-axis inertia
data.Jz = 3002.5; % [kg*m^2] yaw-axis inertia
data.Jw = 2; % [kg*m^2] spin-axis inertia of wheel
data.radius = 0.3401; % [m] wheel radius
% Reduced Pacejka tyre model data
data.tyre_par(1) = 82.8868; % Pacejka coeff.
data.tyre_par(2) = 1.2070; % Pacejka coeff.
data.tyre_par(3) = 1.1351; % Pacejka coeff.
data.tyre_par(4) = 14.4035; % Pacejka coeff.
data.tyre_par(5) = 1.1932; % Pacejka coeff.
data.tyre_par(6) = -0.0001; % Pacejka coeff.
data.tyre_par(7) = 2.1219; % Pacejka coeff.
% Pacejka 5.2 tyre model data
tyre = ImportTyreData('.', 'Tyre_VSM.tir');
tyre = rmfield(tyre, 'file');
data.tyre_par_full = tyre;
data.wbase_f = 1.4727; % [m] front wheelbase
data.wbase_r = 1.4553; % [m] rear wheelbase
data.wbase = data.wbase_f + data.wbase_r; % [m] wheelbase
data.track = 1.655; % [m] track
data.h_cg = 0.631; % [m] centre of gravity height from ground
data.h_roll = 0.091; % [m] roll centre height from ground
data.k_roll_f = 8.67e4; % [Nm] roll stiffness at front
data.k_roll_r = 7.80e4; % [Nm] roll stiffness at rear
data.c_roll_f = 1.2e6; % [Nm/s] roll damping at front
data.c_roll_r = 6e5; % [Nm/s] roll damping at rear
data.k_act_roll = 0.9; % [-] active anti-roll coefficient
data.em_curve = [ % electric motor torque-speed curve
0, 900, 1000, 1100, 1200, 1300 % [RPM]
1500, 1500, 1400, 1000, 500, 0 % [Nm]
];
data.torque_bk_lb = -5e3; % [Nm] minimum brake torque

Answers (0)

Categories

Find more on Green Vehicles in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!