Solution of a 2nd order non linear implicit differential equation using ode15i implicit solver
8 views (last 30 days)
Show older comments
This is a nonlinear differential equation of 2nd order and implicit
I am providing the code I have tried but Iam not getting hoe the velocity changes with time at different time what is the value of velocity.
% Initial conditions
y0 = [0 2]; % initial displacement and velocity
yp0_guess = [0; 0]; % Initial guess for derivatives
% Time span
tspan = [0 20]; % time span for the solution
% Solve using ode15i
[t, y] = ode15i(@implicitODE, tspan, y0, yp0_guess);
% Plot the displacement over time
figure;
subplot(2,1,1);
plot(t, y(:,1));
xlabel('Time (s)');
ylabel('Displacement (y)');
title('Displacement vs Time');
% Plot the velocity over time
subplot(2,1,2);
plot(t,y(:,2)); % y(:,2) corresponds to the velocity (dy/dt)
xlabel('Time (s)');
ylabel('Velocity (dy/dt)');
title('Velocity vs Time');
function res = implicitODE(t, y, yp)
% Constants
pi = 3.141592653589793;
k1 = 4.4049e-18;
k2 = 0.1101;
a = 17.71e-3;
% Extract variables
y1 = y(1); % y1 corresponds to y(t)
y2 = y(2); % y2 corresponds to dy/dt
yp1 = yp(1); % yp1 corresponds to y2
yp2 = yp(2); % yp2 corresponds to y2'
% Compute the residuals
res = zeros(2,1);
res(1) = yp1 - y2; % y1' = y2
res(2) = yp2 - (-k1 * y1^2 * y2 / (a^2 + y1^2)^2.5 / k2)-9.81; % y2' equation
end
0 Comments
Accepted Answer
Sam Chak
on 22 Aug 2024
Hi @Parthajit
Please check if the following is what you expected from the simulation.
tspan = [0 20];
y0 = [0; 2];
[t, y] = ode45(@ode, tspan, y0);
plot(t, y), grid on
xlabel('t')
legend('displacement', 'velocity', 'location', 'south')
function dydt = ode(t, y)
% Constants
k1 = 4.4049e-18;
k2 = 0.1101;
a = 17.71e-3;
% System
dydt = zeros(2, 1);
dydt(1) = y(2);
dydt(2) = - (k1*(y(1)^2)*y(2))/(k2*(a^2 + y(1)^2)^(5/2)) - 9.81;
end
More Answers (2)
Naga
on 22 Aug 2024
Edited: Naga
on 22 Aug 2024
Hi Parthajith,
I understand you want to know the velocity values at different times. To find that, you can read the values of T and y(:,2), where T represents the time stamps and y(:,2) represents the velocity at those particular time stamps. I'm attaching the values below:
T = [0, 0.0000, 0.0001, 0.0001, 0.0001, 0.0002, 0.0002, 0.0003, 0.0004, 0.0005, ...
0.0007, 0.0011, 0.0018, 0.0034, 0.0066, 0.0130, 0.0257, 0.0512, 0.1022, 0.2041, ...
0.4080, 0.8157, 1.6311, 3.2620, 5.2620, 7.2620, 9.2620, 11.2620, 13.2620, 15.2620, ...
17.2620, 19.2620, 20.0000]; %The array T contains the time stamps at which the velocities are recorded.
y(:,2) = [2.0000, 2.0003, 2.0005, 2.0008, 2.0010, 2.0015, 2.0020, 2.0025, 2.0035, 2.0044, ...
2.0064, 2.0103, 2.0181, 2.0337, 2.0650, 2.1275, 2.2525, 2.5025, 3.0024, 4.0023, ...
6.0022, 10.0018, 18.0011, 33.9998, 53.6198, 73.2398, 92.8598, 112.4798, 132.0998, ...
151.7198, 171.3398, 190.9598, 198.2000]; %The array y(:,2) represents the velocity values corresponding to each time stamp in T
plot(T,y(:,2))
Torsten
on 22 Aug 2024
Edited: Torsten
on 22 Aug 2024
% Initial conditions
y0 = [0 2]; % initial displacement and velocity
%yp0_guess = [0; 0]; % Initial guess for derivatives
% Time span
tspan = [0 20]; % time span for the solution
% Solve using ode15i
%[t, y] = ode15i(@implicitODE, tspan, y0, yp0_guess);
[t, y] = ode15s(@nonimplicitODE, tspan, y0);
% Plot the displacement over time
figure;
subplot(2,1,1);
plot(t, y(:,1));
xlabel('Time (s)');
ylabel('Displacement (y)');
title('Displacement vs Time');
% Plot the velocity over time
subplot(2,1,2);
plot(t,y(:,2)); % y(:,2) corresponds to the velocity (dy/dt)
xlabel('Time (s)');
ylabel('Velocity (dy/dt)');
title('Velocity vs Time');
%function res = implicitODE(t, y, yp)
function dy = nonimplicitODE(t, y)
% Constants
pi = 3.141592653589793;
k1 = 4.4049e-18;
k2 = 0.1101;
a = 17.71e-3;
% Extract variables
y1 = y(1); % y1 corresponds to y(t)
y2 = y(2); % y2 corresponds to dy/dt
%yp1 = yp(1); % yp1 corresponds to y2
%yp2 = yp(2); % yp2 corresponds to y2'
% Compute the residuals
%res = zeros(2,1);
%res(1) = yp1 - y2; % y1' = y2
%res(2) = yp2 - (-k1 * y1^2 * y2 / (a^2 + y1^2)^2.5 / k2)-9.81; % y2' equation
dy = zeros(2,1);
dy(1) = y2;
dy(2) = -k1 * y1^2 * y2 / ( k2*(a^2 + y1^2)^2.5 ) - 9.81;
end
0 Comments
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!