Hi Fatima,
To calculate very large numbers in MATLAB, especially when dealing with exponential functions that can result in overflow, you can use "syms" method of computation. Here's a refined approach to handle your calculation:
x = exp(sym(2.8 * 10^10));
R = (log(x))^(3/5) / (log(log(x)))^(1/5);
S_1 = x^(-0.5) * (log(H / (2 * pi)))^2 / (2 * pi) + x^(D - 1) * ((B_2 * R - log(2))^2 / (2 * pi) - (log(H / (2 * pi)))^2 / (2 * pi) + 2.394);
S_2 = 2 * (C_1 * exp(B_2 * (5 - 8 * D) * R / 3) * (B_2 * R)^(5 - 2 * D) + C_2 * exp(-B_2 * R) * (B_2 * R)^2);
S_3 = 1.197 * log(x) / (B_2 * R);
b = (exp(B_2 * (5 - 8 * D) * R / 3) * (B_2 * R)^(5 - 2 * D))^(-1) * (S_1 + S_2 + S_3);
fprintf('The value of b is: %s\n', b_value);
The value of b is: 1.3775207604614539285095203023078e+78982
By using symbolic variables, you can avoid overflow and manage large numbers more effectively. Use "vpa" to specify the precision for the final result, which helps in managing large numbers.
Refer to the following documentation links for more information:
Hope this helps.