Second order ordinary differential equation

9 views (last 30 days)
Abdul
Abdul on 15 Jan 2024
Commented: Sam Chak on 16 Jan 2024
I am trying to find the exact solution of this differential equation, but the error 'explicit solution not found' occur -y''(x) +2cos2x*y(x) -lambda*y(x) =0
  3 Comments
Abdul
Abdul on 15 Jan 2024
I am using the command dsolve for finding the exact solution of this problem. If you have a code that works, kindly share it thanks
Walter Roberson
Walter Roberson on 15 Jan 2024
The notation is a bit ambiguous.
Note that it matters in the end.
syms y(x) lambda
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 2 * cos(2*x) * y - lambda*y == 0
eqn(x) = 
dsolve(eqn)
Warning: Unable to find symbolic solution.
ans = [ empty sym ]
eqn2 = d2y + 2 * cos(2*x * y) - lambda*y == 0
eqn2(x) = 
dsolve(eqn2)
Warning: Unable to find symbolic solution.
ans = [ empty sym ]

Sign in to comment.

Answers (1)

Sam Chak
Sam Chak on 15 Jan 2024
I believe that 'explicit solution not found' is more of a notification than an error message. Upon closer inspection, your second-order system appears to resemble the Mathieu Differential Equation. If that's the case, the solution is provided in the form of the Mathieu function. For additional information, please refer to the following file on File Exchange:
  1 Comment
Sam Chak
Sam Chak on 16 Jan 2024
@Abdul, I don't know how to express the Mathieu functions in MATLAB, but I simulated the Mathieu differential equation for different values of lambda (λ) to observe the stability of the solutions.
lambda = 1:6;
t = 0:0.01:60;
y0 = [1; 0];
for j = 1:numel(lambda)
sol = ode45(@(t, y) MathieuDE(t, y, lambda(j)), t, y0);
y = deval(sol, t);
subplot(2, 3, j)
plot(y(1,:), y(2,:)), grid on
xlabel('y_{1}'), ylabel('y_{2}')
title("\lambda = "+string(lambda(j)))
axis equal
end
%% Mathieu Differential Equation
function dydt = MathieuDE(t, y, lambda)
dydt = zeros(2, 1);
dydt(1) = y(2);
dydt(2) = 2*cos(2*t)*y(1) - lambda*y(1);
end

Sign in to comment.

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!