Finding Coefficients for the particular solution

3 views (last 30 days)
I have this code for the homogenous portion of the equation but I need help trying to find the particular part. I am trying to avoid using any ODE functions
%Equation: y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
format long
Coefa = 1;
Coefb = 3;
Coefc = 3.25;
x0 = 0; x1 = 25; Yin = -25, Yder = 4,
Yin =
-25
Yder =
4
B = [Yin,Yder]; N = 1000;
x = linspace(0,25,N);
y = zeros(1,N);
R = zeros(1,2);
R = SecondOderODE1(Coefa,Coefb, Coefc);
Unrecognized function or variable 'SecondOderODE1'.
if abs(R(1)-R(2))>=1/10^6
A = [exp(R(1)*x0),exp(R(2)*x0); exp(x0*R(1))*R(1), R(2)*exp(x0*R(2))];;
C = B./A
for i = 1:1:N
y(i) = real(C(1)*x(i)^R(1)+C(2)*x(i)^R(2));
figure(1)
plot (x,y)
xlabel ('x')
ylabel('y')
grid on
end
else
A = [x0^R(1), R(1)*x0^(R(1)-1); x0^R(2), log(x0)*(x0^(R(2)-1))];
C = B./A
for i = 1:1:N
y(i) = real(C(1)*x(i)^R(1)+log(abs(x(i)))*C(2)*x(i)^R(2));
end
end
figure(1)
plot(x,y)
xlabel ('x')
ylabel('y')
grid on

Accepted Answer

David Goodmanson
David Goodmanson on 18 Oct 2023
Edited: David Goodmanson on 18 Oct 2023
Hi Tashanda,
let u and v be 2x1 vectors with the coefficient of cos as first element, coefficient of sine as second element, and M*u = v.
M = -eye(2,2) +3*[0 1;-1 0] + 3.25*eye(2,2) % since c'= -s s'= c
v = [3;-3/2] % right hand side
u = M\v % particular solution
u =
0.8000 % .8 cos(x) + .4 sin(x)
0.4000
  2 Comments
Walter Roberson
Walter Roberson on 18 Oct 2023
This matches the main part of the symbolic solution, without the constants of integration terms needed to account for any boundary conditions.
David Goodmanson
David Goodmanson on 18 Oct 2023
Yes it is just the particular solution, as requested by the OP.

Sign in to comment.

More Answers (1)

Walter Roberson
Walter Roberson on 18 Oct 2023
% y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
syms y(x)
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 3*dy + 3.25 * y == 3*cos(x) - 1.5*sin(x)
eqn(x) = 
sympref('abbreviateoutput', false);
sol = dsolve(eqn)
sol = 
simplify(sol, 'steps', 50)
ans = 
I am not sure if using dsolve counts as an "ode function" or not?
  4 Comments
Walter Roberson
Walter Roberson on 22 Oct 2023
% y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
syms y(x)
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 3*dy + 3.25 * y == 3*cos(x) - 1.5*sin(x)
eqn(x) = 
sympref('abbreviateoutput', false);
ic = [y(0) == -25, dy(0) == 4]
ic = 
sol = dsolve(eqn, ic)
sol = 
sol = simplify(sol, 'steps', 50)
sol = 
%cross-check
subs(eqn, y, sol)
ans(x) = 
simplify(ans)
ans(x) = 
symtrue
%numeric form
[eqs,vars] = reduceDifferentialOrder(eqn,y(x))
eqs = 
vars = 
[M,F] = massMatrixForm(eqs,vars)
M = 
F = 
f = M\F
f = 
odefun = odeFunction(f,vars)
odefun = function_handle with value:
@(x,in2)[in2(2,:);in2(2,:).*-3.0-in2(1,:).*(1.3e+1./4.0)+cos(x).*3.0-sin(x).*(3.0./2.0)]
initConditions = [-25 4];
ode15s(odefun, [0 10], initConditions)
So the function stored in odefun is what you would need to to process the system numerically
odefun(x, [y(x); dy(x)])
ans = 

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!