Third Order Coupled ODE's
3 views (last 30 days)
Show older comments
Andrew Amoateng-Agyemang
on 6 Apr 2015
Commented: Didarul Ahasan Redwan
on 1 Apr 2020
I have these coupled equations based off Falkner-Skan:
f′′′=−f⋅f′′−(2m/(m+1))⋅(1−(f′)2)−(2/(m+1))⋅Ri⋅θcos(m/(m+1))
&
θ′′=−Pr⋅f⋅θ'
With the BC's: f(0)=f′(0)=0 and θ(0)=1. f(5)=1 and θ(5)=0 (5 has been taken as the endpoint)
Where Pr, m and Ri are constants which can be assigned, f and θ are functions of η and the dash (') means derivative with respect to η.
I have a MATLAB file which solves this when Ri=0 by using the shooting method (as this is a BVP) and ODE45 but now it seems like that can no longer be used as easily because now they need to be solved simultaneously when Ri is not zero and I don't know where to start.
How can I solve this problem using MATLAB for the plots of f' and θ against η?
2 Comments
ravinder khary
on 29 Jun 2018
Respected Andrew Amoateng-Agyemang, As I am a beginner in MATLAB programming, Can you please share your code of shooting method and ODE45 for the above mentioned coupled Falkner-Skan equation. I also have a coupled BVP to solve. I don't know how to use MATLAB inbuilt function so please share a full code if possible. Thank you
Accepted Answer
Torsten
on 8 Apr 2015
function main
xa = 0; xb = 5;
solinit = bvpinit(linspace(xa,xb,10),[0 0 1 1 0]);
sol = bvp4c(@coupled_falkner_skan,@bc,solinit);
function res = bc(ya,yb)
res = [ ya(1); ya(2); ya(4)-1; yb(2)-1; yb(4)];
function dydx = coupled_falkner_skan(x,y)
m = 0.0909; Ri = 5; Pr = 0.71;
dydx = [y(2); y(3); -y(1)*y(3)-(2*m/(m+1))*(1-y(2)^2)-(2/(m+1))*Ri*y(4)*cos(m*pi/(m+1)); y(5); -Pr*y(1)*y(5)];
Best wishes
Torsten.
3 Comments
Taylor Nichols
on 24 Jan 2019
I know this is an old question, but shouldn't the 4th boudary condition be yb(1) - 1, not yb(2) - 1. The BC you have written at the beginning is not the 1st derivative.
Torsten
on 24 Jan 2019
Yes, take a look at my answer from the 7th of April below. I subsequently copied the code from the comment to it (where the boundary condition is modified) and added the plotting.
More Answers (3)
Torsten
on 7 Apr 2015
Rewrite your equations as a system of first-order ordinary differential equations and use bvp4c to solve.
Best wishes
Torsten.
Torsten
on 7 Apr 2015
function dydx = ode(x,y)
m=...;
Ri=...;
Pr=...;
dydx = [ y(2); y(3); -y(1)*y(3)-2*m/(m+1)*(1-y(2)*2)-2/(m+1)*Ri*y(4)*cos(m/(m+1)); y(5); -Pr*y(1)*y(4)];
function res = bc(ya,yb)
res = [ ya(1); ya(2); yb(1)-1.0; ya(4)-1.0; yb(4)];
solinit = bvpinit(linspace(0,4,5),[0 0 0 0 0]);
sol = bvp4c(@ode,@bc,solinit);
Best wishes
Torsten.
See Also
Categories
Find more on Boundary Value Problems in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!