Magnetized Hybrid Nanofluid Flow , MATLAB Code has some problem. Please help to Rectify. Highly Appreciated

9 views (last 30 days)
function MHN
% Initialization of paramters
beta=1.5;
lambda=1.5;
wt=2.5;
wb=1.5;
ks1=0.5;
ks2=0.1;
a=0.5;
epsilon=0.1;
delta1=0.1;
rhos1=0.2;
rhos2=0.3;
omegas1=0.2;
omegas2=0.1;
phi1=0.5;
phi2=0.5;
rhocps1=0.3;
rhocps2=0.1;
chi=0.1;
omegaf=0.05;
rhof=997.1;
kf=0.613;
rhocpf=4179;
% Constants involve in Equation # 14
CC1=((1-phi1)^(2.5)).*((1-phi2)^(2.5)); % Hybrid to Nanofluid Constant
E1=(1/CC1); % Mau_Hnf/Mau_f (Equation # 14)
CC2=(1-phi2).*((1-phi1).*rhof + rhos1.*phi1) + rhos2.*phi2;% Hybrid to Nanofluid Constant
E2=CC2.*(1/rhof); % rho_Hnf/rho_f (Equation # 14)
DD1=omegas2.*(1+2.*phi2)+2.*omegaf.*(1-phi2); % Hybrid Constant
DD2=omegas2.*(1-phi2)+omegaf.*(2+phi2); % Hybrid
CC3=DD1/DD2; % Hybrid Constant
DD3=omegas1.*(1+2.*phi1)+2.*omegaf.*(1-phi1); % Nanofluid Constant
DD4=omegas1.*(1-phi1)+omegaf.*(2+phi1); % Nanofluid Constant
CC4=DD3/DD4; % Nanofluid Constant
E3=CC3.*CC4; % omega_Hnf/omega_f (Equation # 14)
EE1=2.*kf+ks1-2.*(kf-ks1).*phi1; % Nanofluid Constant
EE2=2.*kf+ks1+(kf-ks1).*phi1; % Nanofluid Constant
CC5=EE1/EE2; % Nanofluid Constant
EE3=2.*kf+ks2-2.*(kf-ks2).*phi2; % Hybrid Constant
EE4=2.*kf+ks2+(kf-ks2).*phi2; % Hybrid Constant
CC6=EE3/EE4; % Hybrid Constant
E4=CC5.*CC6; % k_Hnf/k_f (Equation # 14)
FF1=(1-phi2)*((1-phi1)*rhocpf+phi1*rhocps1)+phi2*rhocps2; % Hybrid to Nanofluid Constant
FF2=1/rhocpf; % Hybrid to Nanofluid Constant
E5=FF1.*FF2; % rhocp_Hnf/rhocp_f (Equation # 14)
% Initial Condition Input
sol = bvpinit(linspace(0,5,10), [1 0 0 0 0 0 0]);
% solution in structure form
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
plot(x1, y1(2,:));
figure (1)
hold on
value = deval(sol1,0);
vpa(value,9);
function res=bcexam2(y0, yinf)
res=[y0(1);y0(2)-1;y0(4)-1-delta1*y0(5);y0(6)-1; yinf(2);yinf(4);yinf(6)]
end
function dydx = bvpexam2(t,y)
yy1=(E3/E1)*beta*y(2)-(E2/E1)*y(1)*y(3)+(E2/E1)*y(2)^(2)
yy2 = -(chi/E4(1+epsilon*y(4)))*(E5*y(1)*y(5)+wt*y(5)*y(7)+wb*y(5)^(2)+lambda(E1*y(3)^(2)+E3*beta*y(2)^(2))+epsilon*E4*y(5)^(2))
yy3 = -a*(y(1)*y(7))-(wt/wb)*yy2
dydx= [y(2);y(3);yy1;y(5);yy2;y(7);yy3]
end
Error in MATLAB
Array indices must be positive integers or logical values.
Error in MHN/bvpexam2 (line 62)
yy2 =
-(chi/E4(1+epsilon*y(4)))*(E5*y(1)*y(5)+wt*y(5)*y(7)+wb*y(5)*y(5)+lambda(E1*y(3)*y(3)+E3*beta*y(2)*y(2))+epsilon*E4*y(5)*y(5))
Error in bvparguments (line 105)
testODE = ode(x1,y1,odeExtras{:});
Error in bvp4c (line 128)
bvparguments(solver_name,ode,bc,solinit,options,varargin);
Error in MHN (line 48)
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
  4 Comments
Shahid Hasnain
Shahid Hasnain on 11 Aug 2023
I am uncertain about the specific issue you are referring to. Furthermore, these modifications involve not only the system of equations but also the boundary conditions and associated parameters. I trust that you will gain clarity regarding the specific inquiry you wish to make.

Sign in to comment.

Accepted Answer

Torsten
Torsten on 27 Mar 2023
MHN
function MHN
% Initialization of paramters
beta=1.5;
lambda=1.5;
wt=2.5;
wb=1.5;
ks1=0.5;
ks2=0.1;
a=0.5;
epsilon=0.1;
delta1=0.1;
rhos1=0.2;
rhos2=0.3;
omegas1=0.2;
omegas2=0.1;
phi1=0.5;
phi2=0.5;
rhocps1=0.3;
rhocps2=0.1;
chi=0.1;
omegaf=0.05;
rhof=997.1;
kf=0.613;
rhocpf=4179;
% Constants involve in Equation # 14
CC1=((1-phi1)^(2.5)).*((1-phi2)^(2.5)); % Hybrid to Nanofluid Constant
E1=(1/CC1); % Mau_Hnf/Mau_f (Equation # 14)
CC2=(1-phi2).*((1-phi1).*rhof + rhos1.*phi1) + rhos2.*phi2;% Hybrid to Nanofluid Constant
E2=CC2.*(1/rhof); % rho_Hnf/rho_f (Equation # 14)
DD1=omegas2.*(1+2.*phi2)+2.*omegaf.*(1-phi2); % Hybrid Constant
DD2=omegas2.*(1-phi2)+omegaf.*(2+phi2); % Hybrid
CC3=DD1/DD2; % Hybrid Constant
DD3=omegas1.*(1+2.*phi1)+2.*omegaf.*(1-phi1); % Nanofluid Constant
DD4=omegas1.*(1-phi1)+omegaf.*(2+phi1); % Nanofluid Constant
CC4=DD3/DD4; % Nanofluid Constant
E3=CC3.*CC4; % omega_Hnf/omega_f (Equation # 14)
EE1=2.*kf+ks1-2.*(kf-ks1).*phi1; % Nanofluid Constant
EE2=2.*kf+ks1+(kf-ks1).*phi1; % Nanofluid Constant
CC5=EE1/EE2; % Nanofluid Constant
EE3=2.*kf+ks2-2.*(kf-ks2).*phi2; % Hybrid Constant
EE4=2.*kf+ks2+(kf-ks2).*phi2; % Hybrid Constant
CC6=EE3/EE4; % Hybrid Constant
E4=CC5.*CC6; % k_Hnf/k_f (Equation # 14)
FF1=(1-phi2)*((1-phi1)*rhocpf+phi1*rhocps1)+phi2*rhocps2; % Hybrid to Nanofluid Constant
FF2=1/rhocpf; % Hybrid to Nanofluid Constant
E5=FF1.*FF2; % rhocp_Hnf/rhocp_f (Equation # 14)
% Initial Condition Input
sol = bvpinit(linspace(0,5,10), [1 0 0 0 0 0 0]);
% solution in structure form
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
plot(x1, y1(2,:));
figure (1)
hold on
value = deval(sol1,0);
vpa(value,9);
function res=bcexam2(y0, yinf)
res=[y0(1);y0(2)-1;y0(4)-1-delta1*y0(5);y0(6)-1; yinf(2);yinf(4);yinf(6)];
end
function dydx = bvpexam2(t,y)
yy1=(E3/E1)*beta*y(2)-(E2/E1)*y(1)*y(3)+(E2/E1)*y(2)^(2);
yy2 = -(chi/E4*(1+epsilon*y(4)))*(E5*y(1)*y(5)+wt*y(5)*y(7)+wb*y(5)^(2)+lambda*(E1*y(3)^(2)+E3*beta*y(2)^(2))+epsilon*E4*y(5)^(2));
yy3 = -a*(y(1)*y(7))-(wt/wb)*yy2;
dydx= [y(2);y(3);yy1;y(5);yy2;y(7);yy3] ;
end
end
  7 Comments
Shahid Hasnain
Shahid Hasnain on 23 Jul 2023
function MHN
% Initialization of paramters
Megnatic_C=[0.5 0.9 1.3 1.5 1.9]
for i=1:length(Megnatic_C)
beta=Megnatic_C(i);
lambda=1.5;
wt=2.5;
wb=1.5;
ks1=0.5;
ks2=0.1;
a=0.5;
epsilon=0.1;
delta1=0.1;
rhos1=0.2;
rhos2=0.3;
omegas1=0.2;
omegas2=0.1;
phi1=0.5;
phi2=0.5;
rhocps1=0.3;
rhocps2=0.1;
chi=0.1;
omegaf=0.05;
rhof=997.1;
kf=0.613;
rhocpf=4179;
% Constants involve in Equation # 14
CC1=((1-phi1)^(2.5)).*((1-phi2)^(2.5)); % Hybrid to Nanofluid Constant
E1=(1/CC1); % Mau_Hnf/Mau_f (Equation # 14)
CC2=(1-phi2).*((1-phi1).*rhof + rhos1.*phi1) + rhos2.*phi2;% Hybrid to Nanofluid Constant
E2=CC2.*(1/rhof); % rho_Hnf/rho_f (Equation # 14)
DD1=omegas2.*(1+2.*phi2)+2.*omegaf.*(1-phi2); % Hybrid Constant
DD2=omegas2.*(1-phi2)+omegaf.*(2+phi2); % Hybrid
CC3=DD1/DD2; % Hybrid Constant
DD3=omegas1.*(1+2.*phi1)+2.*omegaf.*(1-phi1); % Nanofluid Constant
DD4=omegas1.*(1-phi1)+omegaf.*(2+phi1); % Nanofluid Constant
CC4=DD3/DD4; % Nanofluid Constant
E3=CC3.*CC4; % omega_Hnf/omega_f (Equation # 14)
EE1=2.*kf+ks1-2.*(kf-ks1).*phi1; % Nanofluid Constant
EE2=2.*kf+ks1+(kf-ks1).*phi1; % Nanofluid Constant
CC5=EE1/EE2; % Nanofluid Constant
EE3=2.*kf+ks2-2.*(kf-ks2).*phi2; % Hybrid Constant
EE4=2.*kf+ks2+(kf-ks2).*phi2; % Hybrid Constant
CC6=EE3/EE4; % Hybrid Constant
E4=CC5.*CC6; % k_Hnf/k_f (Equation # 14)
FF1=(1-phi2)*((1-phi1)*rhocpf+phi1*rhocps1)+phi2*rhocps2; % Hybrid to Nanofluid Constant
FF2=1/rhocpf; % Hybrid to Nanofluid Constant
E5=FF1.*FF2; % rhocp_Hnf/rhocp_f (Equation # 14)
% Initial Condition Input
sol = bvpinit(linspace(0,5,10), [1 0 0 0 0 0 0]);
% solution in structure form
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
plot(x1, y1(2,:));
figure (1)
hold on
value = deval(sol1,0);
vpa(value,9);
end
function res=bcexam2(y0, yinf)
res=[y0(1);y0(2)-1;y0(4)-1-delta1*y0(5);y0(6)-1; yinf(2);yinf(4);yinf(6)];
end
function dydx = bvpexam2(t,y)
yy1=(E3/E1)*beta*y(2)-(E2/E1)*y(1)*y(3)+(E2/E1)*y(2)^(2)
yy2 = -(chi/E4*(1+epsilon*y(4)))*(E5*y(1)*y(5)+wt*y(5)*y(7)+wb*y(5)^(2)+lambda*(E1*y(3)^(2)+E3*beta*y(2)^(2))+epsilon*E4*y(5)^(2))
yy3 = -a*(y(1)*y(7))-(wt/wb)*yy2
dydx= [y(2);y(3);yy1;y(5);yy2;y(7);yy3]
end
end

Sign in to comment.

More Answers (0)

Categories

Find more on Function Handles in Help Center and File Exchange

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!