Solving a system of ODEs whose coefficients are piecewise functions
1 view (last 30 days)
Show older comments
I try to plot the solution of a system of ODE, on [-10,10], for the initial data [0.001 0.001], using the function:
function dwdt=systode(t,w)
if 0< t<1
f = t*(3-2*t);
if -1<t< 0
f=t*(3+2*t);
else
f = 1/t;
end;
if 0< t <1
h=4*t^4-12*t^3+9*t^2-4*t+3;
if -1< t < 0
h=4*t^4+12*t^3+9*t^2+4*t+3;
else
h=0;
end;
beta=0.5+exp(-abs(t));
dwdt=zeros(2,1);
dwdt(1)=-f*w(1)+w(2);
dwdt(2)=-beta*w(1)-f*w(2)+h*w(1)-f*w(1)^2;
end
The coefficients f(t) and g(t) are piecewise functions as follows.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/846240/image.png)
With the commands
tspan = [-10 10];
z0=[0.001 0.001];
[t,z] = ode45(@(t,z) systode(t,z), tspan, z0);
figure
plot(t,z(:,1),'r');
I get the message
tspan = [-10 10];
↑
Error: Invalid use of operator.
Where could be the mistake? I am also not sure that I defined correctly the functions f, h, β.
0 Comments
Accepted Answer
Torsten
on 28 Dec 2021
function main
T = [];
Z = [];
z0=[0.001 0.001];
tspan1 = [-10 -1];
iflag = 1;
[t,z] = ode45(@(t,z) systode(t,z,iflag), tspan1, z0);
T = vertcat(T,t);
Z = vertcat(Z,z);
tspan2 = [-1 0];
iflag = 2;
z0 = [z(end,1) z(end,2)];
[t,z] = ode45(@(t,z) systode(t,z,iflag), tspan2, z0);
T = vertcat(T,t);
Z = vertcat(Z,z);
tspan3 = [0 1];
iflag = 3;
z0 = [z(end,1) z(end,2)];
[t,z] = ode45(@(t,z) systode(t,z,iflag), tspan3, z0);
T = vertcat(T,t);
Z = vertcat(Z,z);
tspan4 = [1 10];
iflag = 4;
z0 = [z(end,1) z(end,2)];
[t,z] = ode45(@(t,z) systode(t,z,iflag), tspan4, z0);
T = vertcat(T,t);
Z = vertcat(Z,z);
figure
plot(T,Z(:,1),'r');
end
function dwdt = systode(t,w,iflag)
if iflag == 1
f = 1/t;
h = 0;
beta=0.5+exp(t);
elseif iflag == 2
f = t*(3+2*t);
h = 4*t^4+12*t^3+9*t^2+4*t+3;
beta=0.5+exp(t);
elseif iflag == 3
f = t*(3-2*t);
h = 4*t^4-12*t^3+9*t^2-4*t+3;
beta=0.5+exp(-t);
elseif iflag == 4
f = 1/t;
h = 0;
beta = 0.5+exp(-t);
end
dwdt=zeros(2,1);
dwdt(1)=-f*w(1)+w(2);
dwdt(2)=-beta*w(1)-f*w(2)+h*w(1)-f*w(1)^2;
end
3 Comments
Torsten
on 28 Dec 2021
Put the code in a file, name it main.m and load it into MATLAB. Run it and the first function will be plotted in the interval [-10:10]. The command is
figure
plot(T,Z(:,1),'r');
More Answers (2)
Sam Chak
on 21 Jun 2024
Hi @Dehua Kang
The red curve in your image is
and the green curve is
. Below is another demo, with the data from the piecewise smooth functions
and
can be easily obtained from the spreadsheet (Google Sheets or MS Excel).
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1719676/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1719681/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1719686/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1719691/image.png)
%% Piecewise smooth functions (in data form)
tpw = linspace(-10, 10, 201);
fpw = [-1/10, -10/99, -5/49, -10/97, -5/48, -2/19, -5/47, -10/93, -5/46, -10/91, -1/9, -10/89, -5/44, -10/87, -5/43, -2/17, -5/42, -10/83, -5/41, -10/81, -1/8, -10/79, -5/39, -10/77, -5/38, -2/15, -5/37, -10/73, -5/36, -10/71, -1/7, -10/69, -5/34, -10/67, -5/33, -2/13, -5/32, -10/63, -5/31, -10/61, -1/6, -10/59, -5/29, -10/57, -5/28, -2/11, -5/27, -10/53, -5/26, -10/51, -1/5, -10/49, -5/24, -10/47, -5/23, -2/9, -5/22, -10/43, -5/21, -10/41, -1/4, -10/39, -5/19, -10/37, -5/18, -2/7, -5/17, -10/33, -5/16, -10/31, -1/3, -10/29, -5/14, -10/27, -5/13, -2/5, -5/12, -10/23, -5/11, -10/21, -1/2, -10/19, -5/9, -10/17, -5/8, -2/3, -5/7, -10/13, -5/6, -10/11, -1, -27/25, -28/25, -28/25, -27/25, -1, -22/25, -18/25, -13/25, -7/25, 0, 7/25, 13/25, 18/25, 22/25, 1, 27/25, 28/25, 28/25, 27/25, 1, 10/11, 5/6, 10/13, 5/7, 2/3, 5/8, 10/17, 5/9, 10/19, 1/2, 10/21, 5/11, 10/23, 5/12, 2/5, 5/13, 10/27, 5/14, 10/29, 1/3, 10/31, 5/16, 10/33, 5/17, 2/7, 5/18, 10/37, 5/19, 10/39, 1/4, 10/41, 5/21, 10/43, 5/22, 2/9, 5/23, 10/47, 5/24, 10/49, 1/5, 10/51, 5/26, 10/53, 5/27, 2/11, 5/28, 10/57, 5/29, 10/59, 1/6, 10/61, 5/31, 10/63, 5/32, 2/13, 5/33, 10/67, 5/34, 10/69, 1/7, 10/71, 5/36, 10/73, 5/37, 2/15, 5/38, 10/77, 5/39, 10/79, 1/8, 10/81, 5/41, 10/83, 5/42, 2/17, 5/43, 10/87, 5/44, 10/89, 1/9, 10/91, 5/46, 10/93, 5/47, 2/19, 5/48, 10/97, 5/49, 10/99, 1/10];
hpw = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 354/625, 659/625, 909/625, 1104/625, 2, 1359/625, 1449/625, 1544/625, 1674/625, 3, 1674/625, 1544/625, 1449/625, 1359/625, 2, 1104/625, 909/625, 659/625, 354/625, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
plot(tpw, fpw), grid on, xlabel('t'), title('Piecewise function, f(t)')
plot(tpw, hpw), grid on, xlabel('t'), title('Piecewise function, h(t)')
%% Solving the ODEs
tspan = [-10 10];
w0 = [0.001 0.001];
sol = ode45(@(t, w) ode(t, w, tpw, fpw, hpw), tspan, w0);
t = linspace(-10, 10, 2001);
[w, wp] = deval(sol, t); % wp is w-prime (w') = dw/dt
plot(t, w(1,:)), grid on, xlabel('t'), title('Solution, w_{1}(t)')
plot(t, wp(1,:)), grid on, xlabel('t'), title('Derivative, dw_{1}/dt')
%% ODEs
function dwdt = ode(t, w, tpw, fpw, hpw)
f = interp1(tpw, fpw, t); % interpolated piecewise function f(t)
h = interp1(tpw, hpw, t); % interpolated piecewise function h(t)
beta = 0.5 + exp(- abs(t));
dwdt = zeros(2, 1);
dwdt(1) = - f*w(1) + w(2);
dwdt(2) = - beta*w(1) - f*w(2) + h*w(1) - f*w(1)^2;
end
0 Comments
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!