Main Content

systemcomposer.allocation.Allocation

Allocation between source element and target element

    Description

    An Allocation object defines the allocation between the source element and the target element.

    Related objects include:

    Creation

    Create allocations.

    % Create two allocations between four elements in 
    % the default scenario, 'Scenario 1'.
    defaultScenario = allocSet.getScenario('Scenario 1');
    defaultScenario.allocate(sourceElement1,sourceElement2);
    defaultScenario.allocate(sourceElement3,sourceElement4);

    Properties

    expand all

    Source element, specified as a systemcomposer.arch.Element object.

    Target element, specified as a systemcomposer.arch.Element object.

    Allocation scenario, specified as a systemcomposer.allocation.AllocationScenario object.

    Universal unique identifier for allocation, specified as a character vector.

    Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'

    Data Types: char

    Object Functions

    destroyRemove allocation scenario or allocation

    Examples

    collapse all

    Use allocations to analyze a tire pressure monitoring system.

    Overview

    In systems engineering, it is common to describe a system at different levels of abstraction. For example, you can describe a system in terms of its high-level functions. These functions may not have any behavior associated with them but most likely trace back to some operating requirements the system must fulfill. We refer to this layer (or architecture) as the functional architecture. In this example, an automobile tire pressure monitoring system is described in three different architectures:

    1. Functional Architecture — Describes the system in terms of its high-level functions. The connections show dependencies between functions.

    2. Logical Architecture — Describes the system in terms of its logical components and how data is exchanged between them. Additionally, this architecture specifies behaviors for model simulation.

    3. Platform Architecture — Describes the physical hardware needed for the system at a high level.

    The allocation process is defined as linking these three architectures that fully describe the system. The linking captures the information about each architectural layer and makes it accessible to the others.

    Use this command to open the project.

      scExampleTirePressureMonitorSystem

    Open the FunctionalAllocation.mldatx file, which displays allocations from TPMS_FunctionalArchitecture to TPMS_LogicalArchitecture. The elements of TPMS_FunctionalArchitecture are displayed in the first column. The elements of TPMS_LogicalArchitecture are displayed in the first row. The arrows indicate the allocations between model elements.

    The arrows display allocated components in the model. You can observe allocations for each element in the model hierarchy.

    The rest of the example shows how to use this allocation information to further analyze the model.

    Functional to Logical Allocation and Coverage Analysis

    This section shows how to perform coverage analysis to verify that all functions have been allocated. This process requires using the allocation information specified between the functional and logical architectures.

    To start the analysis, load the allocation set.

      allocSet = systemcomposer.allocation.load('FunctionalAllocation');
      scenario = allocSet.Scenarios;

    Verify that each function in the system is allocated.

      import systemcomposer.query.*;
      [~, allFunctions] = allocSet.SourceModel.find(HasStereotype(IsStereotypeDerivedFrom("TPMSProfile.Function")));
      unAllocatedFunctions = [];
      for i = 1:numel(allFunctions)
          if isempty(scenario.getAllocatedTo(allFunctions(i)))
              unAllocatedFunctions = [unAllocatedFunctions allFunctions(i)];
          end
      end
    
      if isempty(unAllocatedFunctions)
          fprintf('All functions are allocated');
      else
          fprintf('%d Functions have not been allocated', numel(unAllocatedFunctions));
      end
    All functions are allocated
    

    The result displays All functions are allocated to verify that all functions in the system are allocated.

    Analyze Suppliers Providing Functions

    This section shows how to identify which functions will be provided by which suppliers using the specified allocations. Since suppliers will be delivering these components to the system integrator, the supplier information is stored in the logical model.

      suppliers = {'Supplier A', 'Supplier B', 'Supplier C', 'Supplier D'};
      functionNames = arrayfun(@(x) x.Name, allFunctions, 'UniformOutput', false);
      numFunNames = length(allFunctions);
      numSuppliers = length(suppliers);
      allocTable = table('Size', [numFunNames, numSuppliers], 'VariableTypes', repmat("double", 1, numSuppliers));
      allocTable.Properties.VariableNames = suppliers;
      allocTable.Properties.RowNames = functionNames;
      for i = 1:numFunNames
          elem = scenario.getAllocatedTo(allFunctions(i));
          for j = 1:numel(elem)
              elemSupplier = elem(j).getEvaluatedPropertyValue("TPMSProfile.LogicalComponent.Supplier");
              allocTable{i, strcmp(elemSupplier, suppliers)} = 1;
          end
    
      end

    The table shows which suppliers are responsible for the corresponding functions.

      allocTable
    allocTable=8×4 table
                                        Supplier A    Supplier B    Supplier C    Supplier D
                                        __________    __________    __________    __________
    
        Report Low Tire Pressure            1             0             0             0     
        Measure pressure on tire            0             0             1             0     
        Measure rotations                   0             1             0             0     
        Calculate if pressure is low        1             0             0             0     
        Report Tire Pressure Levels         1             0             0             0     
        Calculate Tire Pressure             0             1             0             0     
        Measure temprature of tire          0             0             0             1     
        Measure Tire Pressure               0             0             0             0     
    
    

    Analyze Software Deployment Strategies

    You can determine if the Engine Control Unit (ECU) has enough capacity to house all the software components. The software components are allocated to the cores themselves, but the ECU is the component that has the budget property.

    Get the platform architecture.

      platformArch = systemcomposer.loadModel('PlatformArchitecture');

    Load the allocation.

      softwareDeployment = systemcomposer.allocation.load('SoftwareDeployment');
    
      frontECU = platformArch.lookup('Path', 'PlatformArchitecture/Front ECU');
      rearECU = platformArch.lookup('Path', 'PlatformArchitecture/Rear ECU');
    
      scenario1 = softwareDeployment.getScenario('Scenario 1');
      scenario2 = softwareDeployment.getScenario('Scenario 2');
      frontECU_availMemory = frontECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");
      rearECU_availMemory = rearECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");
    
      frontECU_memoryUsed1 = getUtilizedMemoryOnECU(frontECU, scenario1);
      frontECU_isOverBudget1 = frontECU_memoryUsed1 > frontECU_availMemory;
      rearECU_memoryUsed1 = getUtilizedMemoryOnECU(rearECU, scenario1);
      rearECU_isOverBudget1 = rearECU_memoryUsed1 > rearECU_availMemory;
    
      frontECU_memoryUsed2 = getUtilizedMemoryOnECU(frontECU, scenario2);
      frontECU_isOverBudget2 = frontECU_memoryUsed2 > frontECU_availMemory;
      rearECU_memoryUsed2 = getUtilizedMemoryOnECU(rearECU, scenario2);
      rearECU_isOverBudget2 = rearECU_memoryUsed2 > rearECU_availMemory;

    Build a table to showcase the results.

      softwareDeploymentTable = table([frontECU_memoryUsed1;frontECU_availMemory; ...
          frontECU_isOverBudget1;rearECU_memoryUsed1;rearECU_availMemory;rearECU_isOverBudget1], ...
          [frontECU_memoryUsed2; frontECU_availMemory; frontECU_isOverBudget2;rearECU_memoryUsed2; ...
          rearECU_availMemory; rearECU_isOverBudget2], ...
          'VariableNames',{'Scenario 1','Scenario 2'},...
          'RowNames', {'Front ECUMemory Used (MB)', 'Front ECU Memory (MB)', 'Front ECU Overloaded', ...
          'Rear ECU Memory Used (MB)', 'Rear ECU Memory (MB)', 'Rear ECU Overloaded'})
    softwareDeploymentTable=6×2 table
                                     Scenario 1    Scenario 2
                                     __________    __________
    
        Front ECUMemory Used (MB)       110            90    
        Front ECU Memory (MB)           100           100    
        Front ECU Overloaded              1             0    
        Rear ECU Memory Used (MB)         0            20    
        Rear ECU Memory (MB)            100           100    
        Rear ECU Overloaded               0             0    
    
    
      function memoryUsed = getUtilizedMemoryOnECU(ecu, scenario)

    For each component in the ECU, accumulate the binary size required for each allocated software component.

      coreNames = {'Core1','Core2','Core3','Core4'};
      memoryUsed = 0;
      for i = 1:numel(coreNames)
          core = ecu.Model.lookup('Path', [ecu.getQualifiedName '/' coreNames{i}]);
          allocatedSWComps = scenario.getAllocatedFrom(core);
          for j = 1:numel(allocatedSWComps)
              binarySize = allocatedSWComps(j).getEvaluatedPropertyValue("TPMSProfile.SWComponent.BinarySize");
              memoryUsed = memoryUsed + binarySize;
          end
      end
    
      end

    More About

    expand all

    Introduced in R2020b