edge
Find classification edge for support vector machine (SVM) classifier
Syntax
Description
returns the classification edge
(e
= edge(SVMModel
,Tbl
,ResponseVarName
)e
) for the support vector machine (SVM) classifier
SVMModel
using the predictor data in table
Tbl
and the class labels in
Tbl.ResponseVarName
.
The classification edge (e
) is a scalar value that
represents the weighted mean of the classification
margins.
returns the classification edge
(e
= edge(SVMModel
,Tbl
,Y
)e
) for the SVM classifier SVMModel
using the predictor data in table Tbl
and the class labels
in Y
.
computes the classification edge for the observation weights supplied in
e
= edge(___,'Weights'
,weights
)weights
using any of the input arguments in the
previous syntaxes.
Note
If the predictor data X
or the predictor variables in
Tbl
contain any missing values, the
edge
function can return NaN. For more
details, see edge can return NaN for predictor data with missing values.
Examples
Input Arguments
More About
Algorithms
For binary classification, the software defines the margin for observation j, mj, as
where yj ∊ {-1,1}, and f(xj) is the predicted score of observation j for the positive class. However, mj = yjf(xj) is commonly used to define the margin.
References
[1] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000.
Extended Capabilities
Version History
Introduced in R2014aSee Also
ClassificationSVM
| CompactClassificationSVM
| loss
| predict
| margin
| resubEdge
| kfoldEdge
| fitcsvm