Main Content

sdo.sample

Generate parameter samples for sensitivity analysis

Description

x = sdo.sample(ps) generates samples using the specified parameter space definition, ps.

  • If ps is an sdo.ParameterSpace object, then sdo.sample returns a table of samples drawn from the probability distributions specified in the ParameterDistributions, RankCorrelation, and Options properties of ps.

  • If ps is an sdo.GriddedSpace containing only gridded parameters, then sdo.sample generates samples across the specified grid.

  • If ps is an sdo.GriddedSpace containing a random-parameter subspace, then sdo.sample generates a mixture of gridded and random samples.

example

x = sdo.sample(ps,N) specifies the number of random samples to generate.

  • If ps is an sdo.ParameterSpace object, then x is a table with N rows and Np columns, where Np is the number of parameters in ps.

  • If ps is an sdo.GriddedSpace containing only gridded parameters, then sdo.sample ignores N and returns samples across the grid as specified in the gridding options of ps.

  • If ps is an sdo.GriddedSpace containing a random-parameter subspace, then sdo.sample generates N samples for each random parameter and combines them with the gridded parameters, as specified in the gridding options.

example

x = sdo.sample(ps,N,opt) specifies sampling options such as the sampling method.

example

Examples

collapse all

Open the model.

open_system('sdoHydraulicCylinder');

Obtain the parameters from the model.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

Create an sdo.ParameterSpace object to specify the sample distributions.

ps = sdo.ParameterSpace(p);

Generate samples for the parameters.

x = sdo.sample(ps);

Open the model.

open_system('sdoHydraulicCylinder');

Obtain the parameters from the model.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

Create an sdo.ParameterSpace object to specify the sample distributions.

ps = sdo.ParameterSpace(p);

Generate 50 samples for the parameters.

x = sdo.sample(ps,50);

Since R2023a

This example uses the sdoCSTR model discussed in detail in Design Exploration Using Parameter Sampling (Code). Among the parameters in this model are the reactor cylinder area A and height h. Suppose that you want to test the sensitivity of your design objectives over a grid of values for these parameters. To start, open the model and create param.Continuous objects to represent the two parameters.

mdl = "sdoCSTR";
open_system(mdl);
p = sdo.getParameterFromModel(mdl,{'A','h'});

Specify the grid of values for each parameter by placing the values in a cell array. The grids in this example are uniformly spaced, but you can also use nonuniformly spaced values.

Avals = {0.2 0.6 1.0 1.4 1.8 2.2};
hvals = {0.5 1.5 2.5 3.5};

Define the gridded parameter space using this grid.

gp = sdo.GriddedSpace(p,{Avals,hvals});

Sample the parameter space to generate all the combinations to use for sensitivity analysis. By default, sdo.sample generates an exhaustive list of all possible combinations in the parameter space, (Avals,hvals) = (0.2,0.5), (0.6,0.5), (1.0,0.5), ..., (1.4,3.5), (1.8,3.5), (2.2,3.5). Thus, the sampled values make up a table of 24 rows.

values = sdo.sample(gp)
values=24×2 table
     A      h 
    ___    ___

    0.2    0.5
    0.6    0.5
      1    0.5
    1.4    0.5
    1.8    0.5
    2.2    0.5
    0.2    1.5
    0.6    1.5
      1    1.5
    1.4    1.5
    1.8    1.5
    2.2    1.5
    0.2    2.5
    0.6    2.5
      1    2.5
    1.4    2.5
      ⋮

You can visualize the sampled values for a view of the distribution of samples.

 sdo.scatterPlot(values)

MATLAB figure

Use values with sdo.evaluate to evaluate your design objectives at the sampled parameter values. For instance, if you have defined a cost function design.m to capture your design objectives, you can use values in a call to sdo.evaluate as follows.

[yR,infoR] = sdo.evaluate(@design,p,values);

Since R2023a

If your model contains some parameters you want to sample across a grid and others from which you want to draw random samples, you can combine gridded and random parameter spaces.

This example uses the sdoCSTR model discussed in detail in Design Exploration Using Parameter Sampling (Code). Open the model.

mdl = "sdoCSTR";
open_system(mdl)

Among the parameters in this model are the reactor cylinder area A, height h, and the feed temperature and concentration, FeedCon0 and FeedTemp0. Suppose that you want to explore the sensitivity of your design constraint to these four parameters, sampling across a grid of A and h values while drawing FeedCon0 and FeedTemp0 from random distributions.

First, define a gridded parameter space for A and h. Use sdo.getParameterFromModel to create an array of param.Continuous objects representing A and h. Then, specify values for the grid, and create the parameter space.

pg = sdo.getParameterFromModel(mdl,{'A','h'});
Avals = {0.2 0.6 1.0 1.4 1.8};
hvals = {0.5 1.5 2.5};
gspace = sdo.GriddedSpace(pg,{Avals,hvals});

Next, define a random parameter space for FeedCon0 and FeedTemp0. Create an array of param.Continuous objects and specify the probability distributions for each parameter. For this example, assign both variables a normal distribution where the mean is the current parameter value in the model and the variance is 5% of the mean. Then, create the parameter space.

pr = sdo.getParameterFromModel(mdl,{'FeedCon0','FeedTemp0'});
distCon  = makedist('normal',pr(1).Value,0.05*pr(1).Value); 
distTemp = makedist('normal',pr(2).Value,0.05*pr(2).Value);

rspace = sdo.ParameterSpace(pr);
rspace = setDistribution(rspace,'FeedCon0',distCon);
rspace = setDistribution(rspace,'FeedTemp0',distTemp);

Finally, combine the two parameter spaces into a new parameter space.

cspace = combine(gspace,rspace)
cspace = 
  GriddedSpace with properties:

    ParameterValues: {{1x4 cell}  {1x4 cell}  [1x1 prob.NormalDistribution]  [1x1 prob.NormalDistribution]}
              Notes: []
             Spaces: {[1x1 sdo.GriddedSpace]  [1x1 sdo.ParameterSpace]}
     ParameterNames: {'A'  'h'  'FeedCon0'  'FeedTemp0'}
            Options: [1x1 sdo.GriddingOptions]

The combined space is represented by a sdo.GriddedSpace object. The property cspace.Spaces shows that cspace contains the two subspaces, one gridded space and one random parameter space. The property cspace.ParameterValues shows that the space includes the finite grid for A and H, and the probability distributions for the random variables FeedCon0 and FeedTemp0.

You can now use sdo.sample to draw sets of sampled values from the combined space. By default, the samples are exhaustive over the grid, meaning every possible combination of grid values is included in the sampled set. Suppose that for each combination, you want to sample the random parameters ten times. Provide that value to sdo.sample in the NumSample argument.

cspace.Options.Method = 'exhaustive';
NumSample = 10;
evalues = sdo.sample(cspace,NumSample)
evalues=150×4 table
     A      h     FeedCon0    FeedTemp0
    ___    ___    ________    _________

    0.2    0.5     10.269      275.09  
    0.6    0.5     10.269      275.09  
      1    0.5     10.269      275.09  
    1.4    0.5     10.269      275.09  
    1.8    0.5     10.269      275.09  
    0.2    1.5     10.269      275.09  
    0.6    1.5     10.269      275.09  
      1    1.5     10.269      275.09  
    1.4    1.5     10.269      275.09  
    1.8    1.5     10.269      275.09  
    0.2    2.5     10.269      275.09  
    0.6    2.5     10.269      275.09  
      1    2.5     10.269      275.09  
    1.4    2.5     10.269      275.09  
    1.8    2.5     10.269      275.09  
    0.2    0.5     10.917      339.77  
      ⋮

Here, for each of the fifteen combinations of (A, h) values, sdo.sample assigns ten random values for (Feedcon0, FeedTemp0), resulting in 150 sets of (A, h, FeedCon0, FeedTemp0) samples.

You can also have sdo.sample choose only one random (FeedCon0,FeedTemp0) value for each (A,h) pair. To do so, set the sampling method of cspace to sequential. Note that in this case, you created cspace using a gridded space gspace that had gspace.Options.Method = 'exhaustive'. Thus, when you sample cspace, the (A,h) pairs are still exhaustive.

cspace.Options.Method = 'sequential';
svalues = sdo.sample(cspace)
svalues=15×4 table
     A      h     FeedCon0    FeedTemp0
    ___    ___    ________    _________

    0.2    0.5     9.5682      296.27  
    0.6    0.5     10.039         273  
      1    0.5     9.3929      284.05  
    1.4    0.5     9.4432      279.34  
    1.8    0.5     9.9966      329.67  
    0.2    1.5     10.766      285.92  
    0.6    1.5     9.6152      306.03  
      1    1.5     10.186      292.16  
    1.4    1.5     9.8872      308.11  
    1.8    1.5     10.559      283.72  
    0.2    2.5     9.4555      274.32  
    0.6    2.5     10.016      274.02  
      1    2.5     10.276       302.2  
    1.4    2.5      10.55      292.38  
    1.8    2.5     10.772      292.11  

Use values with sdo.evalute to evaluate your design objectives at each of the sampled parameter values. For instance, if you have defined a cost function design, you can use values in a call to sdo.evluate as follows.

[yR,infoR] = sdo.evaluate(@design,p,values);

Open the model.

open_system('sdoHydraulicCylinder');

Obtain the parameters from the model.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

Create an sdo.ParameterSpace object to specify the sample distributions.

ps = sdo.ParameterSpace(p);

Specify the sampling method as Latin hypercube.

opt = sdo.SampleOptions;
opt.Method = 'lhs';

Generate 50 samples for the parameters using Latin hypercube sampling.

x = sdo.sample(ps,50,opt);

Input Arguments

collapse all

Parameter space to sample, specified as an sdo.ParameterSpace object (for random sampling) or an sdo.GriddedSpace object (for gridded sampling or a mixture of random and gridded sampling).

Number of random samples to generate, specified as a positive integer.

Ideally, use the smallest number of samples that yield useful results, because each sample requires a model evaluation. As the number of parameters increases, the number of samples needed to explore the design space generally increases. For correlation or regression analysis, consider using 10*Np samples, where Np is the number of sampled parameters.

N applies only to randomly sampled parameters, that is, parameters specified in an sdo.ParameterSpace object or an sdo.ParameterSpace subspace of a composite sdo.GriddedSpace object. sdo.sample ignores N for parameters configured for gridded sampling and instead returns samples over the specified grid values.

Example: 100

Sampling options, specified as an sdo.SampleOptions or sdo.GriddingOptions object.

  • sdo.SampleOptions — Specify the method for drawing samples from probability distributions defined in an sdo.ParameterSpace object.

  • sdo.GriddingOptions — Specify the method for drawing samples from the grid of parameter values defined in an sdo.GriddedSpace object.

Output Arguments

collapse all

Parameter samples, returned as a table.

  • If ps is an sdo.ParameterSpace object, then x is a table with N rows and Np columns, where Np is the number of parameters in ps. Each column corresponds to a parameter and each row corresponds to a sample of the parameters. If N is omitted, sdo.sample uses N = 2*Np + 1.

  • If ps is an sdo.GriddedSpace containing only gridded parameters, then sdo.sample ignores N and returns samples across the grid, as specified in the gridding options of ps.

  • If ps is an sdo.GriddedSpace containing a random-parameter subspace, then sdo.sample generates N samples for each random parameter and combines them with the gridded parameters, as specified in the gridding options.

Version History

Introduced in R2014a

expand all