estimatePortRisk

Estimate portfolio risk according to risk proxy associated with corresponding object

Description

example

prsk = estimatePortRisk(obj,pwgt) estimates portfolio risk according to the risk proxy associated with the corresponding object (obj) for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the respective workflows when using these different objects, see Portfolio Object Workflow, PortfolioCVaR Object Workflow, and PortfolioMAD Object Workflow.

Examples

collapse all

Given portfolio p, use the estimatePortRisk function to show the standard deviation of portfolio returns for each portfolio in pwgt.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierLimits(p);
prsk = estimatePortRisk(p, pwgt);
disp(prsk)
0.0769
0.3500

Given a portfolio pwgt, use the estimatePortRisk function to show the conditional value-at-risk (CVaR) of portfolio returns for each portfolio.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);
prsk = estimatePortRisk(p, pwgt);
disp(prsk)
0.0407
0.1911

The function rng($seed$) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

Given a portfolio pwgt, use the estimatePortRisk function to show the mean-absolute deviation of portfolio returns for each portfolio.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);
prsk = estimatePortRisk(p, pwgt);
disp(prsk)
0.0177
0.0809

The function rng($seed$) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

Input Arguments

collapse all

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For more information on creating a portfolio object, see

Data Types: object

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix, where NumAssets is the number of assets in the universe and NumPorts is the number of portfolios in the collection of portfolios.

Data Types: double

Output Arguments

collapse all

Estimates for portfolio risk according to the risk proxy associated with the corresponding object (obj) for each portfolio in pwgt, returned as a NumPorts vector.

prsk is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Tips

You can also use dot notation to estimate portfolio risk according to the risk proxy associated with the corresponding object (obj).

prsk = obj.estimatePortRisk(pwgt);

Introduced in R2011a