estimateFrontier
Estimate specified number of optimal portfolios on the efficient frontier
Description
[
estimates the specified number of
optimal portfolios on the efficient frontier for pwgt
,pbuy
,psell
]
= estimateFrontier(obj
)Portfolio
,
PortfolioCVaR
, or PortfolioMAD
objects. For details on
the respective workflows when using these different objects, see Portfolio Object Workflow, PortfolioCVaR Object Workflow, and PortfolioMAD Object Workflow.
Examples
Create efficient portfolios:
load CAPMuniverse p = Portfolio('AssetList',Assets(1:12)); p = estimateAssetMoments(p, Data(:,1:12),'missingdata',true); p = setDefaultConstraints(p); plotFrontier(p);
pwgt = estimateFrontier(p, 5); pnames = cell(1,5); for i = 1:5 pnames{i} = sprintf('Port%d',i); end Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList); disp(Blotter);
Port1 Port2 Port3 Port4 Port5 AAPL 0.017926 0.058247 0.097816 0.12955 0 AMZN 0 0 0 0 0 CSCO 0 0 0 0 0 DELL 0.0041906 0 0 0 0 EBAY 0 0 0 0 0 GOOG 0.16144 0.35678 0.55228 0.75116 1 HPQ 0.052566 0.032302 0.011186 0 0 IBM 0.46422 0.36045 0.25577 0.11928 0 INTC 0 0 0 0 0 MSFT 0.29966 0.19222 0.082949 0 0 ORCL 0 0 0 0 0 YHOO 0 0 0 0 0
Create a Portfolio
object for 12 stocks based on CAPMuniverse.mat
.
load CAPMuniverse p0 = Portfolio('AssetList',Assets(1:12)); p0 = estimateAssetMoments(p0, Data(:,1:12),'missingdata',true); p0 = setDefaultConstraints(p0);
Use setMinMaxNumAssets
to define a maximum number of 3 assets.
p1 = setMinMaxNumAssets(p0, [], 3);
Use setBounds
to define a lower and upper bound and a BoundType
of 'Conditional'
.
p1 = setBounds(p1, 0.1, 0.5,'BoundType', 'Conditional'); pwgt = estimateFrontier(p1, 5);
The following table shows that the optimized allocations only have maximum 3 assets invested, and small positions less than 0.1 are avoided.
result = table(p0.AssetList', pwgt)
result=12×2 table
Var1 pwgt
________ ___________________________________________________________________
{'AAPL'} 0 0 0 0.14232 0
{'AMZN'} 0 0 0 0 0
{'CSCO'} 0 0 0 0 0
{'DELL'} 0 0 0 0 0
{'EBAY'} 0 0 0 0 0.5
{'GOOG'} 0.16891 0.29534 0.42177 0.5 0.5
{'HPQ' } 0 0 4.996e-15 -2.7756e-17 0
{'IBM' } 0.49968 0.43657 0.37326 0.35768 0
{'INTC'} 0 0 0 0 0
{'MSFT'} 0.3314 0.2681 0.20496 4.6838e-17 0
{'ORCL'} 0 0 0 0 0
{'YHOO'} 0 0 0 0 0
The estimateFrontier
function uses the MINLP solver to solve this problem. Use the setSolverMINLP
function to configure the SolverType
and options.
p1.solverTypeMINLP
ans = 'OuterApproximation'
p1.solverOptionsMINLP
ans = struct with fields:
MaxIterations: 1000
AbsoluteGapTolerance: 1.0000e-07
RelativeGapTolerance: 1.0000e-05
NonlinearScalingFactor: 1000
ObjectiveScalingFactor: 1000
Display: 'off'
CutGeneration: 'basic'
MaxIterationsInactiveCut: 30
ActiveCutTolerance: 1.0000e-07
IntMainSolverOptions: [1×1 optim.options.Intlinprog]
NumIterationsEarlyIntegerConvergence: 30
ExtendedFormulation: 0
NumInnerCuts: 10
NumInitialOuterCuts: 10
Create efficient portfolios:
load CAPMuniverse p = PortfolioCVaR('AssetList',Assets(1:12)); p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true); p = setDefaultConstraints(p); p = setProbabilityLevel(p, 0.95); plotFrontier(p);
pwgt = estimateFrontier(p, 5); pnames = cell(1,5); for i = 1:5 pnames{i} = sprintf('Port%d',i); end Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList); disp(Blotter);
Port1 Port2 Port3 Port4 Port5 AAPL 0.010223 0.073393 0.11939 0.13137 0 AMZN 0 0 0 0 0 CSCO 0 0 0 0 0 DELL 0.02301 0 0 0 0 EBAY 0 0 0 0 0 GOOG 0.20389 0.38068 0.56253 0.75919 1 HPQ 0.041396 0.009472 0 0 0 IBM 0.44369 0.36472 0.26247 0.10944 0 INTC 0 0 0 0 0 MSFT 0.27779 0.17174 0.055611 0 0 ORCL 0 0 0 0 0 YHOO 0 0 0 0 0
Create efficient portfolios:
load CAPMuniverse p = PortfolioMAD('AssetList',Assets(1:12)); p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true); p = setDefaultConstraints(p); plotFrontier(p);
pwgt = estimateFrontier(p, 5); pnames = cell(1,5); for i = 1:5 pnames{i} = sprintf('Port%d',i); end Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList); disp(Blotter);
Port1 Port2 Port3 Port4 Port5 AAPL 0.029643 0.075874 0.11335 0.13405 0 AMZN 0 0 0 0 0 CSCO 0 0 0 0 0 DELL 0.0086367 0 0 0 0 EBAY 0 0 0 0 0 GOOG 0.16177 0.35217 0.54489 0.74913 1 HPQ 0.056891 0.023419 0 0 0 IBM 0.45916 0.37921 0.29376 0.11682 0 INTC 0 0 0 0 0 MSFT 0.2839 0.16933 0.048005 0 0 ORCL 0 0 0 0 0 YHOO 0 0 0 0 0
Obtain the default number of efficient portfolios over the entire range of the efficient frontier.
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; p = Portfolio; p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); pwgt = estimateFrontier(p); disp(pwgt);
0.8891 0.7215 0.5540 0.3865 0.2190 0.0515 0 0 0 0 0.0369 0.1289 0.2209 0.3129 0.4049 0.4969 0.4049 0.2314 0.0579 0 0.0404 0.0567 0.0730 0.0893 0.1056 0.1219 0.1320 0.1394 0.1468 0 0.0336 0.0929 0.1521 0.2113 0.2705 0.3297 0.4630 0.6292 0.7953 1.0000
Starting from the initial portfolio, the estimateFrontier
function returns purchases and sales to get from your initial portfolio to each efficient portfolio on the efficient frontier. Given an initial portfolio in pwgt0
, you can obtain purchases and sales.
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; p = Portfolio; p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = setInitPort(p, pwgt0); [pwgt, pbuy, psell] = estimateFrontier(p); display(pwgt);
pwgt = 4×10
0.8891 0.7215 0.5540 0.3865 0.2190 0.0515 0 0 0 0
0.0369 0.1289 0.2209 0.3129 0.4049 0.4969 0.4049 0.2314 0.0579 0
0.0404 0.0567 0.0730 0.0893 0.1056 0.1219 0.1320 0.1394 0.1468 0
0.0336 0.0929 0.1521 0.2113 0.2705 0.3297 0.4630 0.6292 0.7953 1.0000
display(pbuy);
pbuy = 4×10
0.5891 0.4215 0.2540 0.0865 0 0 0 0 0 0
0 0 0 0.0129 0.1049 0.1969 0.1049 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0.0521 0.1113 0.1705 0.2297 0.3630 0.5292 0.6953 0.9000
display(psell);
psell = 4×10
0 0 0 0 0.0810 0.2485 0.3000 0.3000 0.3000 0.3000
0.2631 0.1711 0.0791 0 0 0 0 0.0686 0.2421 0.3000
0.1596 0.1433 0.1270 0.1107 0.0944 0.0781 0.0680 0.0606 0.0532 0.2000
0.0664 0.0071 0 0 0 0 0 0 0 0
Obtain the default number of efficient portfolios over the entire range of the efficient frontier.
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; m = m/12; C = C/12; rng(11); AssetScenarios = mvnrnd(m, C, 20000); p = PortfolioCVaR; p = setScenarios(p, AssetScenarios); p = setDefaultConstraints(p); p = setProbabilityLevel(p, 0.95); pwgt = estimateFrontier(p); disp(pwgt);
0.8445 0.6841 0.5148 0.3534 0.1897 0.0303 0 0 0 0 0.0609 0.1429 0.2302 0.3171 0.3987 0.4742 0.3524 0.1803 0 0 0.0458 0.0640 0.0945 0.1081 0.1340 0.1590 0.1738 0.1918 0.2211 0 0.0488 0.1090 0.1606 0.2215 0.2776 0.3365 0.4738 0.6280 0.7789 1.0000
The function rng
() resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.
Starting from the initial portfolio, the estimateFrontier
function returns purchases and sales to get from your initial portfolio to each efficient portfolio on the efficient frontier. Given an initial portfolio in pwgt0
, you can obtain purchases and sales.
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; m = m/12; C = C/12; rng(11); AssetScenarios = mvnrnd(m, C, 20000); p = PortfolioCVaR; p = setScenarios(p, AssetScenarios); p = setDefaultConstraints(p); p = setProbabilityLevel(p, 0.95); pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = setInitPort(p, pwgt0); [pwgt, pbuy, psell] = estimateFrontier(p); display(pwgt);
pwgt = 4×10
0.8445 0.6841 0.5148 0.3534 0.1897 0.0303 0 0 0 0
0.0609 0.1429 0.2302 0.3171 0.3987 0.4742 0.3524 0.1803 0 0
0.0458 0.0640 0.0945 0.1081 0.1340 0.1590 0.1738 0.1918 0.2211 0
0.0488 0.1090 0.1606 0.2215 0.2776 0.3365 0.4738 0.6280 0.7789 1.0000
display(pbuy);
pbuy = 4×10
0.5445 0.3841 0.2148 0.0534 0 0 0 0 0 0
0 0 0 0.0171 0.0987 0.1742 0.0524 0 0 0
0 0 0 0 0 0 0 0 0.0211 0
0 0.0090 0.0606 0.1215 0.1776 0.2365 0.3738 0.5280 0.6789 0.9000
display(psell);
psell = 4×10
0 0 0 0 0.1103 0.2697 0.3000 0.3000 0.3000 0.3000
0.2391 0.1571 0.0698 0 0 0 0 0.1197 0.3000 0.3000
0.1542 0.1360 0.1055 0.0919 0.0660 0.0410 0.0262 0.0082 0 0.2000
0.0512 0 0 0 0 0 0 0 0 0
The function rng
() resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.
Obtain the default number of efficient portfolios over the entire range of the efficient frontier.
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; m = m/12; C = C/12; rng(11); AssetScenarios = mvnrnd(m, C, 20000); p = PortfolioMAD; p = setScenarios(p, AssetScenarios); p = setDefaultConstraints(p); pwgt = estimateFrontier(p); disp(pwgt);
0.8817 0.7150 0.5488 0.3811 0.2173 0.0503 0 0 0 0 0.0435 0.1290 0.2130 0.2987 0.3821 0.4668 0.3614 0.1751 0 0 0.0385 0.0600 0.0826 0.1061 0.1242 0.1477 0.1780 0.2101 0.2267 0 0.0363 0.0960 0.1556 0.2141 0.2764 0.3352 0.4605 0.6148 0.7733 1.0000
The function rng
() resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.
Starting from the initial portfolio, the estimateFrontier
function returns purchases and sales to get from your initial portfolio to each efficient portfolio on the efficient frontier. Given an initial portfolio in pwgt0
, you can obtain purchases and sales.
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; m = m/12; C = C/12; rng(11); AssetScenarios = mvnrnd(m, C, 20000); p = PortfolioMAD; p = setScenarios(p, AssetScenarios); p = setDefaultConstraints(p); pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = setInitPort(p, pwgt0); [pwgt, pbuy, psell] = estimateFrontier(p); display(pwgt);
pwgt = 4×10
0.8817 0.7150 0.5488 0.3811 0.2173 0.0503 0 0 0 0
0.0435 0.1290 0.2130 0.2987 0.3821 0.4668 0.3614 0.1751 0 0
0.0385 0.0600 0.0826 0.1061 0.1242 0.1477 0.1780 0.2101 0.2267 0
0.0363 0.0960 0.1556 0.2141 0.2764 0.3352 0.4605 0.6148 0.7733 1.0000
display(pbuy);
pbuy = 4×10
0.5817 0.4150 0.2488 0.0811 0 0 0 0 0 0
0 0 0 0 0.0821 0.1668 0.0614 0 0 0
0 0 0 0 0 0 0 0.0101 0.0267 0
0 0 0.0556 0.1141 0.1764 0.2352 0.3605 0.5148 0.6733 0.9000
display(psell);
psell = 4×10
0 0 0 0 0.0827 0.2497 0.3000 0.3000 0.3000 0.3000
0.2565 0.1710 0.0870 0.0013 0 0 0 0.1249 0.3000 0.3000
0.1615 0.1400 0.1174 0.0939 0.0758 0.0523 0.0220 0 0 0.2000
0.0637 0.0040 0 0 0 0 0 0 0 0
The function rng
() resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.
Input Arguments
Object for portfolio, specified using Portfolio
,
PortfolioCVaR
, or PortfolioMAD
object. For more
information on creating a portfolio object, see
Data Types: object
Number of points to obtain on the efficient frontier, specified as a scalar integer.
Note
If no value is specified for NumPorts
, the default value is obtained
from the hidden property defaultNumPorts
(default value is
10
). If NumPorts
= 1
, this
function returns the portfolio specified by the hidden property
defaultFrontierLimit
(current default value is
'min'
).
Data Types: double
Output Arguments
Optimal portfolios on the efficient frontier with specified number of portfolios spaced
equally from minimum to maximum portfolio return, returned as a
NumAssets
-by-NumPorts
matrix. pwgt
is returned for a Portfolio
, PortfolioCVaR
, or
PortfolioMAD
input object (obj
).
Purchases relative to an initial portfolio for optimal portfolios on the efficient
frontier, returned as NumAssets
-by-NumPorts
matrix.
Note
If no initial portfolio is specified in obj.InitPort
, that value is
assumed to be 0
such that pbuy = max(0, pwgt)
and
psell = max(0, -pwgt)
.
pbuy
is returned for a Portfolio
,
PortfolioCVaR
, or PortfolioMAD
input object
(obj
).
Sales relative to an initial portfolio for optimal portfolios on the efficient frontier,
returned as a NumAssets
-by-NumPorts
matrix.
Note
If no initial portfolio is specified in obj.InitPort
, that value is
assumed to be 0
such that pbuy = max(0, pwgt)
and
psell = max(0, -pwgt)
.
psell
is returned for Portfolio
,
PortfolioCVaR
, or PortfolioMAD
input object
(obj
).
More About
The efficient frontier is a key concept in modern portfolio theory (MPT) that represents a set of optimal portfolios offering the highest expected return for a given level of risk, or the lowest risk for a given level of expected return.
The efficient frontier illustrates the tradeoff between risk (often measured as the standard deviation of portfolio returns) and expected return. Investors aim to construct portfolios that lie on this frontier to maximize their returns for a given level of risk. Portfolios that lie on the efficient frontier are considered optimal because they provide the best possible expected return for their level of risk. Portfolios that lie below the frontier are suboptimal, as they do not provide sufficient return for the amount of risk taken. The efficient frontier emphasizes the importance of diversification. By combining different assets with varying returns and risks, investors can reduce the overall risk of the portfolio without sacrificing expected returns.
Tips
You can also use dot notation to estimate the specified number of optimal portfolios over the entire efficient frontier.
[pwgt, pbuy, psell] = obj.estimateFrontier(NumPorts);
When introducing transaction costs and turnover constraints to the
Portfolio
,PortfolioCVaR
, orPortfolioMAD
object, the portfolio optimization objective contains a term with an absolute value. For more information on how Financial Toolbox™ handles such cases algorithmically, see References.
References
[1] Cornuejols, G., and R. Tutuncu. Optimization Methods in Finance. Cambridge University Press, 2007.
Version History
Introduced in R2011a
See Also
estimateFrontierByReturn
| estimateFrontierByRisk
| estimateFrontierLimits
| setBounds
| setMinMaxNumAssets
Topics
- Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object
- Estimate Efficient Frontiers for Portfolio Object
- Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object
- Estimate Efficient Frontiers for PortfolioCVaR Object
- Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object
- Estimate Efficient Frontiers for PortfolioMAD Object
- Portfolio Optimization Examples Using Financial Toolbox
- Bond Portfolio Optimization Using Portfolio Object
- Portfolio Optimization Theory
- Choose MINLP Solvers for Portfolio Problems
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)