lratiotest
Likelihood ratio test of model specification
Syntax
Description
returns the rejection decision from conducting a likelihood
ratio test of model specification using input
loglikelihood objective function evaluations at the input
unrestricted and restricted model parameter estimates, with input
degrees of freedom.h = lratiotest(uLogL,rLogL,dof)
If
uLogLorrLogLis a vector, then the other must be a scalar or vector of equal length.lratiotest(uLogL,rLogL,dof)treats each element of a vector input as a separate test, and returns a vector of rejection decisions.If
uLogLorrLogLis a row vector, thenlratiotest(uLogL,rLogL,dof)returns a row vector.
Examples
Input Arguments
Output Arguments
More About
Tips
Estimate unrestricted and restricted univariate linear time series models, such as
arimaorgarch, or time series regression models (regARIMA) usingestimate. Estimate unrestricted and restricted VAR models (varm) usingestimate.The
estimatefunctions return loglikelihood maxima, which you can use as inputs tolratiotest.If you can easily compute both restricted and unrestricted parameter estimates, then use
lratiotest. By comparison:waldtestonly requires unrestricted parameter estimates.lmtestrequires restricted parameter estimates.
Algorithms
lratiotestperforms multiple, independent tests when the unrestricted or restricted model loglikelihood maxima (uLogLandrLogL, respectively) is a vector.If
rLogLis a vector anduLogLis a scalar, thenlratiotest“tests down” against multiple restricted models.If
uLogLis a vector andrLogLis a scalar, thenlratiotest“tests up” against multiple unrestricted models.Otherwise,
lratiotestcompares model specifications pair-wise.
alphais nominal in that it specifies a rejection probability in the asymptotic distribution. The actual rejection probability is generally greater than the nominal significance.
References
[1] Davidson, R. and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK: Oxford University Press, 2004.
[2] Godfrey, L. G. Misspecification Tests in Econometrics. Cambridge, UK: Cambridge University Press, 1997.
[3] Greene, W. H. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2008.
[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press, 1994.
Version History
Introduced before R2006a