Main Content

CSI Feedback with Autoencoders

This example shows how to use an autoencoder neural network to compress downlink channel state information (CSI) over a clustered delay line (CDL) channel. CSI feedback is in the form of a raw channel estimate array.

Introduction

In conventional 5G radio networks, CSI parameters are quantities related to the state of a channel that are extracted from the channel estimate array. The CSI feedback includes several parameters, such as the Channel Quality Indication (CQI), the precoding matrix indices (PMI) with different codebook sets, and the rank indicator (RI). The UE uses the CSI reference signal (CSI-RS) to measure and compute the CSI parameters. The user equipment (UE) reports CSI parameters to the access network node (gNB) as feedback. Upon receiving the CSI parameters, the gNB schedules downlink data transmissions with attributes such as modulation scheme, code rate, number of transmission layers, and MIMO precoding. This figure shows an overview of a CSI-RS transmission, CSI feedback, and the transmission of downlink data that is scheduled based on the CSI parameters.

The UE processes the channel estimate to reduce the amount of CSI feedback data. As an alternative approach, the UE compresses and feeds back the channel estimate array. After receipt, the gNB decompresses and processes the channel estimate to determine downlink data link parameters. The compression and decompression can be achieved using an autoencoder neural network [1, 2]. This approach eliminates the use of existing quantized codebook and can improve overall system performance.

This example uses a 5G downlink channel with these system parameters.

txAntennaSize = [2 2 2 1 1]; % rows, columns, polarizations, panels
rxAntennaSize = [2 1 1 1 1]; % rows, columns, polarizations, panels
rmsDelaySpread = 300e-9;     % s
maxDoppler = 5;              % Hz
nSizeGrid = 52;              % Number resource blocks (RB)
                             % 12 subcarriers per RB
subcarrierSpacing = 15;      % 15, 30, 60, 120 kHz
numTrainingChEst = 15000;

% Carrier definition
carrier = nrCarrierConfig;
carrier.NSizeGrid = nSizeGrid;
carrier.SubcarrierSpacing = subcarrierSpacing
carrier = 
  nrCarrierConfig with properties:

                NCellID: 1
      SubcarrierSpacing: 15
           CyclicPrefix: 'normal'
              NSizeGrid: 52
             NStartGrid: 0
                  NSlot: 0
                 NFrame: 0
    IntraCellGuardBands: [0×2 double]

   Read-only properties:
         SymbolsPerSlot: 14
       SlotsPerSubframe: 1
          SlotsPerFrame: 10

autoEncOpt.NumSubcarriers = carrier.NSizeGrid*12;
autoEncOpt.NumSymbols = carrier.SymbolsPerSlot;
autoEncOpt.NumTxAntennas = prod(txAntennaSize);
autoEncOpt.NumRxAntennas = prod(rxAntennaSize);

Generate and Preprocess Data

The first step of designing an AI-based system is to prepare training and testing data. For this example, generate simulated channel estimates and preprocess the data. Use 5G Toolbox™ functions to configure a CDL-C channel. For more information on the data generation, see Prepare Data for CSI Processing example. Define a CDL-C channel.

channel = nrCDLChannel;
channel.DelayProfile = 'CDL-C';
channel.DelaySpread = rmsDelaySpread;       % s
channel.MaximumDopplerShift = maxDoppler;   % Hz
channel.RandomStream = "Global stream";
channel.TransmitAntennaArray.Size = txAntennaSize;
channel.ReceiveAntennaArray.Size = rxAntennaSize;
channel.ChannelFiltering = false;           % No filtering for 

The number of samples to be generated for the dataset can be set below. For shorter runtime, the number of samples is set to 1500. Saved results use 15000 samples.

numSamples = 1500;

Select domain for preprocessed data preparation, truncation factor, and timing offset.

autoEncOpt.DataDomain       = "Frequency-Spatial";
autoEncOpt.TruncationFactor = 10;
autoEncOpt.ZeroTimingOffset = true;

If Parallel Computing Toolbox™ is available, set the autoEncOpt.UseParallel variable to true to enable parallel data generation. Data generation takes about six minute for 15000 samples on a PC with Intel® Xeon® W-2133 CPU @ 3.60GHz and running in parallel on six workers.

autoEncOpt.UseParallel = true;

Enable autoEncOpt.SaveData to save preprocessed channel estimates to .mat files.

autoEncOpt.SaveData = true;
autoEncOpt.DataDir = "Data";
autoEncOpt.DataFilePrefix = "CH_est";

Generate Samples

The helperCSINetGenerateData helper function generates 'numSamples' of preprocessed [NdelayNtx2] channel estimates by using the process described in the Prepare Data for CSI Processing example. When you enable saveOptions.SaveData, the function saves each [NdelayNtx2Nrx] channel estimate as an individual file in the saveOptions.DataDir with the prefix of saveOptions.DataFilePrefix.

[HtruncReal,autoEncOpt] = helperCSINetGenerateData(numSamples,channel,carrier,autoEncOpt);
Starting CSI data generation
6 worker(s) running
00:00:30 -  0% Completed
00:00:37 -  0% Completed
00:00:38 -  0% Completed
00:00:50 -  0% Completed
00:00:50 -  0% Completed
00:00:53 -  0% Completed
00:00:58 -  0% Completed
00:01:05 - 100% Completed

Preprocess Samples

The HtruncReal variable contains Nframes of frames. Each frame has data for Nrx receive antennas, which are independent.

[maxDelay,nTx,Niq,nRx,Nframes] = size(HtruncReal)
maxDelay = 
28
nTx = 
8
Niq = 
2
nRx = 
2
Nframes = 
750

Combine frames and antennas. Then, calculate the mean value and standard deviation, and then use the mean and standard deviation values to normalize the data.

HtruncReal = reshape(HtruncReal,maxDelay,nTx,Niq,nRx*Nframes);
meanVal = mean(HtruncReal,'all')
meanVal = single

-2.5427e-04
stdVal = std(HtruncReal,[],'all')
stdVal = single

16.1309

Separate the data into training, validation, and test sets. Also, normalize the data to achieve zero mean and a target standard deviation of 0.0212, which restricts most of the data to the range of [-0.5 0.5].

N = size(HtruncReal, 4);
numTrain = floor(N*10/15)
numTrain = 
1000
numVal = floor(N*3/15)
numVal = 
300
numTest = floor(N*2/15)
numTest = 
200
targetStd = 0.0212;
HTReal = (HtruncReal(:,:,:,1:numTrain)-meanVal) ...
  /stdVal*targetStd+0.5;
HVReal = (HtruncReal(:,:,:,numTrain+(1:numVal))-meanVal) ...
  /stdVal*targetStd+0.5;
HTestReal = (HtruncReal(:,:,:,numTrain+numVal+(1:numTest))-meanVal) ...
  /stdVal*targetStd+0.5;
autoEncOpt.MeanVal = meanVal;
autoEncOpt.StdValue = stdVal;
autoEncOpt.TargetSTDValue = targetStd;  

Define and Train Neural Network Model

The second step of designing an AI-based system is to define and train the neural network model.

Define Neural Network

This example uses a modified version of the autoencoder neural network proposed in [1].

inputSize = [autoEncOpt.MaxDelay nTx 2];  % Third dimension is real and imaginary parts
nLinear = prod(inputSize);
nEncoded = 64;

autoencoderNet = dlnetwork([ ...
    % Encoder
    imageInputLayer(inputSize,"Name","Htrunc", ...
      "Normalization","none","Name","Enc_Input")

    convolution2dLayer([3 3],2,"Padding","same","Name","Enc_Conv")
    batchNormalizationLayer("Epsilon",0.001,"Name","Enc_BN")
    leakyReluLayer(0.3,"Name","Enc_leakyRelu")

    flattenLayer("Name","Enc_flatten")

    fullyConnectedLayer(nEncoded,"Name","Enc_FC")

    sigmoidLayer("Name","Enc_Sigmoid")

    % Decoder
    fullyConnectedLayer(nLinear,"Name","Dec_FC")

    functionLayer(@(x)dlarray(reshape(x,maxDelay,nTx,2,[]),'SSCB'), ...
      "Formattable",true,"Acceleratable",true,"Name","Dec_Reshape")
    ]);

autoencoderNet = ...
  helperCSINetAddResidualLayers(autoencoderNet, "Dec_Reshape");

autoencoderNet = addLayers(autoencoderNet, ...
    [convolution2dLayer([3 3],2,"Padding","same","Name","Dec_Conv") ...
    sigmoidLayer("Name","Dec_Sigmoid")]);
autoencoderNet = ...
  connectLayers(autoencoderNet,"leakyRelu_2_3","Dec_Conv");

figure
plot(autoencoderNet)
title('CSI Compression Autoencoder')

Figure contains an axes object. The axes object with title CSI Compression Autoencoder contains an object of type graphplot.

Train Neural Network

Set the training options for the autoencoder neural network and train the network using the trainnet (Deep Learning Toolbox) function. Training takes less than three minutes on an Intel® Xeon® W-2133 CPU @ 3.60GHz with NVIDIA® TITAN V GPU with compute capacity of 7.0 and 12 GB of memory. Set trainNow to false to load the pretrained network. Note that the saved network works for the following settings. If you change any of these settings, set trainNow to true.

txAntennaSize = [2 2 2 1 1]; % rows, columns, polarizations, panels
rxAntennaSize = [2 1 1 1 1]; % rows, columns, polarizations, panels
rmsDelaySpread = 300e-9;     % s
maxDoppler = 5;              % Hz
nSizeGrid = 52;              % Number resource blocks (RB)
                             % 12 subcarriers per RB
subcarrierSpacing = 15; 
trainNow = false;

miniBatchSize = 1000;
options = trainingOptions("adam", ...
    InitialLearnRate=0.01, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=156, ...
    LearnRateDropFactor=0.5916, ...
    Epsilon=1e-7, ...
    MaxEpochs=1000, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    ValidationData={HVReal,HVReal}, ...
    ValidationFrequency=20, ...
    Metrics="rmse", ...
    Verbose=true, ...
    ValidationPatience=20, ...
    OutputNetwork="best-validation-loss", ...
    ExecutionEnvironment="auto", ...
    Plots='training-progress') 
options = 
  TrainingOptionsADAM with properties:

             GradientDecayFactor: 0.9000
                       MaxEpochs: 1000
                InitialLearnRate: 0.0100
               LearnRateSchedule: 'piecewise'
             LearnRateDropFactor: 0.5916
             LearnRateDropPeriod: 156
                   MiniBatchSize: 1000
                         Shuffle: 'every-epoch'
         CheckpointFrequencyUnit: 'epoch'
        PreprocessingEnvironment: 'serial'
                         Verbose: 1
                VerboseFrequency: 50
                  ValidationData: {[28×8×2×300 single]  [28×8×2×300 single]}
             ValidationFrequency: 20
              ValidationPatience: 20
                         Metrics: 'rmse'
             ObjectiveMetricName: 'loss'
            ExecutionEnvironment: 'auto'
                           Plots: 'training-progress'
                       OutputFcn: []
                  SequenceLength: 'longest'
            SequencePaddingValue: 0
        SequencePaddingDirection: 'right'
                InputDataFormats: "auto"
               TargetDataFormats: "auto"
         ResetInputNormalization: 1
    BatchNormalizationStatistics: 'auto'
                   OutputNetwork: 'best-validation-loss'
                    Acceleration: "auto"
                  CheckpointPath: ''
             CheckpointFrequency: 1
        CategoricalInputEncoding: 'integer'
       CategoricalTargetEncoding: 'auto'
                L2Regularization: 1.0000e-04
         GradientThresholdMethod: 'l2norm'
               GradientThreshold: Inf
      SquaredGradientDecayFactor: 0.9990
                         Epsilon: 1.0000e-07

  Show all accessible properties of TrainingOptionsADAM

lossFunc = @(x,t) nmseLossdB(x,t);

Use the normalized mean squared error (NMSE) between the network inputs and outputs in dB as the training loss function to find the best set of weights for the autoencoder.

if trainNow
  [net,trainInfo] = ...
    trainnet(HTReal,HTReal,autoencoderNet,lossFunc,options); %#ok<UNRCH> 
  savedOptions = options;
  savedOptions.ValidationData = [];
  save("dCSITrainedNetwork_" ...
    + string(datetime("now","Format","dd_MM_HH_mm")), ...
    'net','trainInfo','autoEncOpt','savedOptions')
else
  autoEncOptCached = autoEncOpt;
  load("dCSITrainedNetwork",'net','trainInfo','autoEncOpt','savedOptions')
  if autoEncOpt.NumSubcarriers ~= autoEncOptCached.NumSubcarriers ...
      || autoEncOpt.NumSymbols ~= autoEncOptCached.NumSymbols ...
      || autoEncOpt.NumTxAntennas ~= autoEncOptCached.NumTxAntennas ...
      || autoEncOpt.NumRxAntennas ~= autoEncOptCached.NumRxAntennas ...
      || autoEncOpt.MaxDelay ~= autoEncOptCached.MaxDelay
    error("CSIExample:Missmatch", ...
      "Saved network does not match settings. Set trainNow to true.")
  end
end

Test Trained Network

Use the predict (Deep Learning Toolbox) function to process the test data.

HTestRealHat = predict(net,HTestReal);

Calculate the correlation and NMSE between the input and output of the autoencoder network. The correlation is defined as

ρ=E{1Nn=1N|hˆnHhn|hˆn2hn2}

where hn is the channel estimate at the input of the autoencoder and hˆn is the channel estimate at the output of the autoencoder. NMSE is defined as

NMSE=E{H-Hˆ22H22}normalized mean square error is equal to the square of the second norm of the difference between autoencoder input and output, divided y the square of the seconf norm of the autoencoder input.

where H is the channel estimate at the input of the autoencoder and Hˆ is the channel estimate at the output of the autoencoder.

rho = zeros(numTest,1);
nmse = zeros(numTest,1);
for n=1:numTest
    in = HTestReal(:,:,1,n) + 1i*(HTestReal(:,:,2,n));
    out = HTestRealHat(:,:,1,n) + 1i*(HTestRealHat(:,:,2,n));

    % Calculate correlation
    n1 = sqrt(sum(conj(in).*in,'all'));
    n2 = sqrt(sum(conj(out).*out,'all'));
    aa = abs(sum(conj(in).*out,'all'));
    rho(n) = aa / (n1*n2);

    % Calculate NMSE
    mse = mean(abs(in-out).^2,'all');
    nmse(n) = 10*log10(mse / mean(abs(in).^2,'all'));
end

figure
tiledlayout(2,1)
nexttile
histogram(rho,"Normalization","probability")
grid on
title(sprintf("Autoencoder Correlation (Mean \\rho = %1.5f)", ...
  mean(rho)))
xlabel("\rho"); ylabel("PDF")
nexttile
histogram(nmse,"Normalization","probability")
grid on
title(sprintf("Autoencoder NMSE (Mean NMSE = %1.2f dB)",mean(nmse)))
xlabel("NMSE (dB)"); ylabel("PDF")

Figure contains 2 axes objects. Axes object 1 with title Autoencoder Correlation (Mean blank rho blank = blank 0 . 99999 ), xlabel \rho, ylabel PDF contains an object of type histogram. Axes object 2 with title Autoencoder NMSE (Mean NMSE = -46.41 dB), xlabel NMSE (dB), ylabel PDF contains an object of type histogram.

End-to-End CSI Feedback System

This figure shows the end-to-end processing of channel estimates for CSI feedback. The UE uses the CSI-RS signal to estimate the channel response for one slot, Hest. The preprocessed channel estimate, Htr, is encoded by using the encoder portion of the autoencoder to produce a 1-by-Nenc compressed array. The compressed array is decompressed by the decoder portion of the autoencoder to obtain Htrˆ. Postprocessing Htrˆ produces Hestˆ.

End-to-end CSI compression

To obtain the encoded array, split the autoencoder into two parts: the encoder network and the decoder network.

[encNet,decNet] = helperCSINetSplitEncoderDecoder(net,"Enc_Sigmoid");
plotNetwork(net,encNet,decNet)

Figure contains 3 axes objects. Axes object 1 with title Autoencoder contains an object of type graphplot. Axes object 2 with title Encoder contains an object of type graphplot. Axes object 3 with title Decoder contains an object of type graphplot.

Generate channel estimates for 100 slots. Each frame contains one slot and channel is reset after each frame.

numFrames = 100;
[autoEncOpt,channel] = addSimOptions(autoEncOpt,channel,carrier);
Hest = helperCSIGenerateData(numFrames,channel,carrier,autoEncOpt);

Encode and decode the channel estimates with Normalization set to true.

autoEncOpt.Normalization = true;
codeword = helperCSINetEncode(encNet, Hest, autoEncOpt);
Hhat = helperCSINetDecode(decNet, codeword, autoEncOpt);

Calculate the correlation and NMSE for the end-to-end CSI feedback system.

H = squeeze(mean(Hest,2));
rhoE2E = zeros(nRx,numFrames);
nmseE2E = zeros(nRx,numFrames);
for rx=1:nRx
    for n=1:numFrames
        out = Hhat(:,rx,:,n);
        in = H(:,rx,:,n);
        rhoE2E(rx,n) = helperCSINetCorrelation(in,out);
        nmseE2E(rx,n) = helperNMSE(in,out);
    end
end
figure
tiledlayout(2,1)
nexttile
histogram(rhoE2E,"Normalization","probability")
grid on
title(sprintf("End-to-End Correlation (Mean \\rho = %1.5f)", ...
  mean(rhoE2E,'all')))
xlabel("\rho"); ylabel("PDF")
nexttile
histogram(nmseE2E,"Normalization","probability")
grid on
title(sprintf("End-to-End NMSE (Mean NMSE = %1.2f dB)", ...
  mean(nmseE2E,'all')))
xlabel("NMSE (dB)"); ylabel("PDF")

Figure contains 2 axes objects. Axes object 1 with title End-to-End blank Correlation blank (Mean blank rho blank = blank 0 . 99053 ), xlabel \rho, ylabel PDF contains an object of type histogram. Axes object 2 with title End-to-End NMSE (Mean NMSE = -17.56 dB), xlabel NMSE (dB), ylabel PDF contains an object of type histogram.

Effect of Quantized Codewords

Practical systems require quantizing the encoded codeword by using a small number of bits. Simulate the effect of quantization across the range of [2, 10] bits. The results show that 6-bits is enough to closely approximate the single-precision performance.

CSI compression with autoencoder and quantization

maxVal = 1;
minVal = -1;
idxBits = 1;
nBitsVec = 2:10;
rhoQ = zeros(nRx,numFrames,length(nBitsVec));
nmseQ = zeros(nRx,numFrames,length(nBitsVec));
for numBits = nBitsVec
    disp("Running for " + numBits + " bit quantization")

    % Quantize between 0:2^n-1 to get bits
    qCodeword = uencode(double(codeword*2-1), numBits);

    % Get back the floating point, quantized numbers
    codewordRx = (single(udecode(qCodeword,numBits))+1)/2;
    Hhat = helperCSINetDecode(decNet, codewordRx, autoEncOpt);
    H = squeeze(mean(Hest,2));
    for rx=1:nRx
        for n=1:numFrames
            out = Hhat(:,rx,:,n);
            in = H(:,rx,:,n);
            rhoQ(rx,n,idxBits) = helperCSINetCorrelation(in,out);
            nmseQ(rx,n,idxBits) = helperNMSE(in,out);
        end
    end
    idxBits = idxBits + 1;
end
Running for 2 bit quantization
Running for 3 bit quantization
Running for 4 bit quantization
Running for 5 bit quantization
Running for 6 bit quantization
Running for 7 bit quantization
Running for 8 bit quantization
Running for 9 bit quantization
Running for 10 bit quantization
figure
tiledlayout(2,1)
nexttile
plot(nBitsVec,squeeze(mean(rhoQ,[1 2])),'*-')
title("Correlation (Codeword-" + size(codeword,3) + ")")
xlabel("Number of Quantization Bits"); ylabel("\rho")
grid on
nexttile
plot(nBitsVec,squeeze(mean(nmseQ,[1 2])),'*-')
title("NMSE (Codeword-" + size(codeword,3) + ")")
xlabel("Number of Quantization Bits"); ylabel("NMSE (dB)")
grid on

Figure contains 2 axes objects. Axes object 1 with title Correlation (Codeword-64), xlabel Number of Quantization Bits, ylabel \rho contains an object of type line. Axes object 2 with title NMSE (Codeword-64), xlabel Number of Quantization Bits, ylabel NMSE (dB) contains an object of type line.

Further Exploration

The autoencoder is able to compress a [624 8] single-precision complex channel estimate array into a [64 1] single-precision array with a mean correlation factor of 0.99 and a NMSE of –19.55 dB. Using 6-bit quantization requires only 384 bits of CSI feedback data, which equates to a compression ratio of approximately 800:1.

display("Compression ratio is " + (624*8*32*2)/(64*6) + ":" + 1)
    "Compression ratio is 832:1"

Investigate the effect of truncationFactor on the system performance. Vary the 5G system parameters, channel parameters, and number of encoded symbols and then find the optimum values for the defined channel.

The NR PDSCH Throughput Using Channel State Information Feedback example shows how to use channel state information (CSI) feedback to adjust the physical downlink shared channel (PDSCH) parameters and measure throughput. Replace the CSI feedback algorithm with the CSI compression autoencoder and compare performance.

Helper Functions

Explore the helper functions to see the detailed implementation of the system.

Training Data Generation

helperCSINetGenerateData

helperCSIGenerateData

helperCSIChannelEstimate

Network Definition and Manipulation

helperCSINetDLNetwork

helperCSINetAddResidualLayers

helperCSINetSplitEncoderDecoder

CSI Processing

helperCSIPreprocessChannelEstimate

helperCSINetPostprocessChannelEstimate

helperCSINetEncode

helperCSINetDecode

Performance Measurement

helperCSINetCorrelation

helperNMSE

Appendix: Optimize Hyperparameters with Experiment Manager

Use the Experiment Manager app to find the optimal parameters. CSITrainingProject.mlproj is a preconfigured project. Extract the project.

projectName = "CSITrainingProject";
if ~exist(projectName,"dir")
  projRoot = helperCSINetExtractProject(projectName);
else
  projRoot = fullfile(exRoot(),projectName);
end

To open the project, start the Experiment Manager app and open the following file.

disp(fullfile(".","CSITrainingProject","CSITrainingProject.prj"))
.\CSITrainingProject\CSITrainingProject.prj

The Optimize Hyperparameters experiment uses Bayesian optimization with hyperparameter search ranges specified as in the following figure. After you open the project, you can use the experiment setup function CSIAutoEncNN_setup and the custom metric function is E2E_NMSE.

ExperimentSetup.png

ExperimentResults.png

The optimal parameters are 0.01 for initial learning rate, 156 iterations for the learning rate drop period, and 0.5916 for learning rate drop factor. After finding the optimal hyperparameters, train the network with same parameters multiple times to find the best trained network.

ExperimentSetp2.png

The ninth trial produced the best E2E_NMSE. This example uses this trained network as the saved network.

ExperimentResults2.png

Configuring Batch Mode

When execution Mode is set to Batch Sequential or Batch Simultaneous, training data must be accessible to the workers in a location defined by the dataDir variable in the Prepare Data in Bulk section. Set dataDir to a network location that is accessible by the workers. For more information, see Offload Experiments as Batch Jobs to a Cluster (Deep Learning Toolbox).

Local Functions

function plotNetwork(net,encNet,decNet)
%plotNetwork Plot autoencoder network
%   plotNetwork(NET,ENC,DEC) plots the full autoencoder network together
%   with encoder and decoder networks.
fig = figure;
t1 = tiledlayout(1,2,'TileSpacing','Compact');
t2 = tiledlayout(t1,1,1,'TileSpacing','Tight');
t3 = tiledlayout(t1,2,1,'TileSpacing','Tight');
t3.Layout.Tile = 2;
nexttile(t2)
plot(net)
title("Autoencoder")
nexttile(t3)
plot(encNet)
title("Encoder")
nexttile(t3)
plot(decNet)
title("Decoder")
pos = fig.Position;
pos(3) = pos(3) + 200;
pos(4) = pos(4) + 300;
pos(2) = pos(2) - 300;
fig.Position = pos;
end

function rootDir = exRoot()
%exRoot Example root directory
rootDir = fileparts(which("helperCSINetDLNetwork"));
end

function loss = nmseLossdB(x,xHat)
%nmseLossdB NMSE loss in dB
in = complex(x(:,:,1,:),x(:,:,2,:));
out = complex(xHat(:,:,1,:),xHat(:,:,2,:));
nmsePerObservation = helperNMSE(in,out);
loss = mean(nmsePerObservation);
end

function [opt,channel] = addSimOptions(opt,channel,carrier)
opt.SaveData = false;
opt.Preprocess = false;
if isa(channel,"nrCDLChannel")
  % Make sure that this is high enough for nrPerfectChannelEstimate to return
  % the full number of symbols worth of channel estimates
  opt.ChannelSampleDensity = 64*4;
end

waveInfo = nrOFDMInfo(carrier);
channel.SampleRate = waveInfo.SampleRate;

numSubCarriers = carrier.NSizeGrid*12; % 12 subcarriers per RB
Tdelay = 1/(numSubCarriers*carrier.SubcarrierSpacing*1e3);
opt.MaxDelay = round((channel.DelaySpread/Tdelay)*opt.TruncationFactor/2)*2;

opt.NumSlotsPerFrame = 1;
opt.Preprocess = false;
opt.ResetChannelPerFrame = true;
opt.Normalization = false;
opt.Verbose = false;
end

References

[1] Wen, Chao-Kai, Wan-Ting Shih, and Shi Jin. “Deep Learning for Massive MIMO CSI Feedback.” IEEE Wireless Communications Letters 7, no. 5 (October 2018): 748–51. https://doi.org/10.1109/LWC.2018.2818160.

[2] Zimaglia, Elisa, Daniel G. Riviello, Roberto Garello, and Roberto Fantini. “A Novel Deep Learning Approach to CSI Feedback Reporting for NR 5G Cellular Systems.” In 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), 47–52. Riga, Latvia: IEEE, 2020. https://doi.org/10.1109/MTTW51045.2020.9245055.

See Also

Topics