Communications Toolbox
Design and simulate the physical layer of communications systems
Communications Toolbox™ provides algorithms and apps for the analysis, design, end-to-end simulation, and verification of communications systems. Toolbox algorithms including channel coding, modulation, MIMO, and OFDM enable you to compose and simulate a physical layer model of your standard-based or custom-designed wireless communications system.
The toolbox provides a waveform generator app, constellation and eye diagrams, bit-error-rate, and other analysis tools and scopes for validating your designs. These tools enable you to generate and analyze signals, visualize channel characteristics, and obtain performance metrics such as error vector magnitude (EVM). The toolbox includes SISO and MIMO statistical and spatial channel models. Channel profile options include Rayleigh, Rician, and WINNER II models. It also includes RF impairments, including RF nonlinearity and carrier offset and compensation algorithms, including carrier and symbol timing synchronizers. These algorithms enable you to realistically model link-level specifications and compensate for the effects of channel degradations.
Using Communications Toolbox with RF instruments or hardware support packages, you can connect your transmitter and receiver models to radio devices and verify your designs with over-the-air testing.
Get Started:
Modulation and Channel Coding
Specify system components for channel coding (including convolutional, turbo, LDPC, and TPC), modulation (including OFDM, QAM, APSK), scrambling, interleaving, and filtering.
Receiver Design and Synchronization
Model and simulate front-end receiver and synchronization components including AGC, I/Q imbalance correction, DC blocking, and timing and carrier synchronization.
Link-Level Performance Metrics
Characterize link-level performance with BER, BLER, PER, and throughput measures.
Noise and Fading Channels
Simulate channel noise and fading models, including AWGN, multipath Rayleigh fading, Rician fading, and WINNER II spatial channel models.
RF Impairments
Model effects of RF impairments, including nonlinearity, phase noise, I/Q imbalance, thermal noise, and phase and frequency offsets.
Wireless Waveform Generator App
Generate, impair, visualize, and export modulated waveforms (including OFDM, QAM, PSK, and WLAN 802.11).
Standards-Based Waveforms
Generate waveforms compliant with various standards including, DVB, MIL-STD 188, television and FM broadcasting, ZigBee®, NFC, WPAN 802.15.4, cdma2000, and 1xEV-DO signals.
MIMO Techniques
Simulate the effects of massive MIMO hybrid beamforming. You can also perform transmit and receive diversity, and simulate effects of space-time block coding and spatial multiplexing on system performance.
MIMO Channels and Receivers
Apply MIMO multipath fading and WINNER II spatial channel modeling, and model MIMO receiver components, including MIMO channel estimation and equalization.
Signal Visualizations
Use Constellation Diagram and Eye Diagram scopes to visualize the effects of various impairments and corrections.
Signal Measurements
Compute standard measurements (including EVM, ACPR, ACLR, MER, CCDF, eye height, jitter, rise time, fall time) for quantitatively characterizing system performance.
Supported Radios
Connect your waveforms to a variety of supported software-defined radios (SDRs) including ADALM® Pluto®, RTL-SDR, USRP® and Xilinx® Zynq®-based radios.
Transmitters and Receivers
Process captured or live over-the-air wireless signals for applications including airplane tracking with ADS-B Signals, automatic meter reading, FM broadcasting with RBDS, and FRS/GMRS receiver.
Waveform generation, link-level simulation and testing
Generate waveforms and simulate Bluetooth Low Energy (BLE) and Bluetooth® Basic Rate (BR) and Extended Data Rate (EDR) links. Perform standard tests and measurements defined by the Bluetooth RF-PHY Test Specifications.
Mesh Network simulation and interference modeling
Model and simulate Bluetooth mesh networks. Simulate coexistence mechanisms to analyze the interference of WLAN on BLE network.
Protocol layer and MAC modeling
Generate and decode BLE link layer packets and L2CAP frames. Model link layer state machines used to establish connections between BLE devices.
Packetized Communications
Model and simulate packetized modems, including data link layer processing with ALOHA or CSMA/CA MAC algorithms.
Standards-Based MAC Frames
Generate and decode MAC frames for various standards including ZigBee (IEEE® 802.15.4) and NFC.
Cartesian Positioning for txsite
and rxsite
objects
Perform point-to-point RF propagation analysis using a cartesian coordinate system
Ray Tracing Analysis for Cartesian Sites
Use STL files to describe the 3-D environment for ray tracing analysis
Bluetooth Direction Finding
Estimate the angle of arrival (AoA) or angle of departure (AoD) of Bluetooth low energy (BLE) transmissions.
Bluetooth adaptive frequency hopping
Generate frequency hopping sequence for inquiry, paging, and connection procedures in Bluetooth BR/EDR modes.
Log likelihood ratio (LLR) estimation
Generate signals and channel impairments to train and test LLR estimation neural networks
See the release notes for details on any of these features and corresponding functions.