Smooth eigendecomposition of a Hermitian matrix function

Numerical computation of a smooth eigendecomposition of a n-by-n Hermitian matrix valued function of one real parameter
7 Downloads
Updated 30 Apr 2025

View License

This function numerically computes the (smooth) minimum variation eigendecomposition of an n-by-n Hermitian matrix-valued function FUN of one real parameter over an interval. The eigenvector matrices are unitary; the eigenvalues are real, arranged in decreasing order, and assumed to be distinct for all values of the parameter. It is possible to continue a subset of the eigenvalues and eigenvectors.
A typical call to hermEigCont is:
[Tout, Uout, Dout, flag] = hermEigCont(FUN, tspan, params)
See the script example_hermEigCont.m for an example of how to use the function.
The command "help hermEigCont" displays information and functionality of the software.
Please cite the references below if you use this software.
Authors: Alessandra Papini and Alessandro Pugliese

Cite As

L. Dieci, A. Papini, A. Pugliese, "Approximating Coalescing Points for Eigenvalues of Hermitian Matrices of Three Parameters", SIAM Journal on Matrix Analysis and Applications, Vol. 34, Iss. 2, pp. 519-541, 2013. https://doi.org/10.1137/120898036

L. Dieci, A. Pugliese, "Hermitian matrices depending on three parameters: Coalescing eigenvalues", Linear Algebra Appl., Vol. 436, Iss. 11, pp. 4120-4142, 2012. https://doi.org/10.1016/j.laa.2012.01.009

MATLAB Release Compatibility
Created with R2023b
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.0.1

Fixed typos in the description

1.0.0