Problem 54680. Determine whether a number is practical
A number n is practical if all smaller numbers can be written as a sum of the proper divisors of n. The number 24 is practical because its proper divisors are 1, 2, 3, 4, 6, 8, and 12 and for example
5 = 4+1, 7 = 4+3, 9 = 6+3, 10 = 8+2, 11 = 8+3, 13 = 12+1, 14 = 12+2, 15 = 12+3, 16 = 12+4,
17 = 12+4+1, 18 = 12+6, 19 = 12+3+4, 20 = 12+8, 21 = 12+8+1, 22 = 12+8+2, 23 = 12+8+3
However, 23 is not practical because its only proper divisor, 1, cannot be repeated in the sum.
Write a function to determine whether a number is practical.
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers6
Suggested Problems
-
5814 Solvers
-
I've got the power! (Inspired by Project Euler problem 29)
138 Solvers
-
11079 Solvers
-
Given a matrix, swap the 2nd & 3rd columns
1213 Solvers
-
Moving average (variable kernel length)
133 Solvers
More from this Author314
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!