Why is the Fourier Transform of symbolic Laplacian function (2nd partial derivative) not being found?
    6 views (last 30 days)
  
       Show older comments
    
I am needing to find the Fourier Transform of the following symbolic expression:
syms U(x,y,z) beta k
LHS = laplacian(U) + beta.^2*U
LHS_FT = fourier(LHS)
That is, 

I'm needing to take the spatial 3D Fourier Transform of LHS. 
This is the output I get:
LHS(x, y, z) = 

LHS_FT(y, z) = 

I am stuck here, any help would be much appreciated! Thank you in advance!
7 Comments
  David Goodmanson
      
      
 on 18 Aug 2021
				
      Edited: David Goodmanson
      
      
 on 18 Aug 2021
  
			Hi Paul,
the answer was
LHS_FT =
beta^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- kx^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
+ fourier(fourier(fourier(diff(U(x, y, z), y, y), x, kx), y, ky), z, kz)
+ fourier(fourier(fourier(diff(U(x, y, z), z, z), x, kx), y, ky), z, kz)
so it could do the conversion d^2/dx^2 -->  -kx^2, but it couldn't convert d^2/dy^2 or d^2/dz^2, which would have made the nice symmetric expression
beta^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- kx^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- ky^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- kz^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
Answers (0)
See Also
Categories
				Find more on Calculus in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!









