Clear Filters
Clear Filters

How to solve Arrhenius equation: k=Ae^-E/(RTa)

27 views (last 30 days)
Julius Jethro
Julius Jethro on 18 May 2021
Answered: Rahul on 15 Jun 2023
The temperature dependence of chemical reactions can be computed with the Arrhenius equation: k=Ae^-E/(RTa)^^
Where k=reaction rate (s−1), A=the pre exponential (or frequency) factor, E=activation energy (J/mol),
R=gas constant [8.314 J/(mole · K)], and Ta = absolute temperature (K). A compound has E=1 ×105 J/mol
and A=7 ×1016.
A. Create three MATLAB FUNCTION file to calculate the reaction rate.
B. Use MATLAB script file to generate a vector of Ta for temperatures ranging from 253 to 325 K.
C. Generate MATLAB plot of the reaction rate (k) versus Ta. Also include axis labels and titles for
the plot.
D. Calculate the reaction rate at Ta = 295 K and write the result here.

Answers (1)

Rahul
Rahul on 15 Jun 2023
Below given MATLAB script can solve the required Arrheieius equation. If different values are required, then those values can be replaced with those of variables, T_min,T_max, A,E,R.
% B
T_min = 253;
T_max = 325;
Ta_vec = linspace(T_min, T_max, 1000);
% C
A = 7e16;
E = 1e5;
R = 8.314;
k_vec = zeros(1, length(Ta_vec));
for i = 1:length(Ta_vec)
Ta = Ta_vec(i);
k_vec(i) = calculate_k(A, E, R, Ta);
end
plot(Ta_vec, k_vec);
title('Reaction Rate vs. Temperature');
xlabel('Temperature (K)');
ylabel('Reaction Rate (s^{-1})');
% D
A = 7e16;
E = 1e5;
R = 8.314;
Ta = 295;
k = calculate_k(A, E, R, Ta);
fprintf('Reaction rate at Ta = %d K: %e s^-1\n', Ta, k);
% A
function k = calculate_k(A, E, R, Ta)
k = A * exp(-E / (R * Ta));
end

Categories

Find more on MATLAB in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!