differential evalution code Error using * Inner matrix dimensions must agree.
    8 views (last 30 days)
  
       Show older comments
    
Error in @(x)sum((minus((x(1)),V)*sin(2.*pi.*x(2).*t+x(3)).^2))/n   Error in noise_de (line 56)             pop(i).Cost=CostFunction(pop(i).Position);
- clear all; close all; clc
- fs=200; %sampling freq.
- dt =1/fs;
- n=fs/3 %number of samples/cycle
- m=3 %no. of cycles
- fi=50;
- t = dt*(0:400); %data window
- ww=wgn(201,1,-40);
- size(transpose(ww))
- t =dt*(0:200);
- y=sin(2*pi*fi*t + 0.3);
- for j=0:200/(n*m)
- t =dt*(j*m*n:(j+1)*m*n);
- x=sin(2*pi*fi*t + 0.3)+transpose(wgn(1+n*m,1,-40));
- V=x
- tmax=0.01;
- lastreported=0;
- %% Problem Definition
- t_est=[];
- f_est=[];
- dt=1/fs;
- i_max=tmax*fs
- for ii=0:i_max
- if(ii/i_max*100-lastreported>=1)
- lastreported=ii/i_max*100;
- fprintf('%5.2f%%\n',lastreported);
- end
- t=(ii:ii+n-1)*dt;
- CostFunction=@(x) sum((minus((x(1)),V)*sin(2*pi.*x(2).*t+x(3)).^2))/n; % Cost Function
- nVar=3; % Number of Decision Variables
- VarSize=[1 nVar]; % Decision Variables Matrix Size
- VarMin=[0,48,0]; % Lower Bound of Decision Variables
- VarMax=[1000,52,2*pi]; % Upper Bound of Decision Variables
- %% DE Parameters
- MaxIt=200; % Maximum Number of Iterations
- nPop=50; % Population Size
- beta=0.5; % Scaling Factor
- pCR=0.2; % Crossover Probability
- minCost=1e-10;
- %% Initialization
- empty_individual.Position=[];
- empty_individual.Cost=[];
- BestSol.Cost=inf;
- pop=repmat(empty_individual,nPop,1);
- for i=1:nPop
- pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
- pop(i).Cost=CostFunction(pop(i).Position);
- if pop(i).Cost<BestSol.Cost
- BestSol=pop(i);
- end
- end
- BestCost=zeros(MaxIt,1);
- %% DE Main Loop
- for it=1:MaxIt
- for i=1:nPop
- x=pop(i).Position;
- A=randperm(nPop);
- A(A==i)=[];
- a=A(1);
- b=A(2);
- c=A(3);
- % Mutation
- %beta=unifrnd(beta_min,beta_max);
- y=pop(a).Position+beta.*(pop(b).Position-pop(c).Position);
- y = max(y, VarMin);
- y = min(y, VarMax);
- % Crossover
- z=zeros(size(x));
- j0=randi([1 numel(x)]);
- for j=1:numel(x)
- if j==j0 || rand<=pCR
- z(j)=y(j);
- else
- z(j)=x(j);
- end
- end
- NewSol.Position=z;
- NewSol.Cost=CostFunction(NewSol.Position);
- if NewSol.Cost<pop(i).Cost
- pop(i)=NewSol;
- if pop(i).Cost<BestSol.Cost
- BestSol=pop(i);
- end
- end
- end
- % Update Best Cost
- BestCost(it)=BestSol.Cost;
- % Show Iteration Information
- %disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
- if(minCost>BestSol.Cost)
- break;
- ErrorTarget=0.00000001;
- EvalMax=10000*n;
- end
- end
- %% Show Results
- % disp(['Iteration ' num2str(ii) ': Best Cost = ' num2str(BestSol.Position(2))]);
- t_est=[t_est;(ii)*dt];
- f_est=[f_est;BestSol.Position(2)];
- if(minCost>BestSol.Cost)
- %break;
- ErrorTarget=0.00000001;
- EvalMax=10000*n;
- end
- end
- end
- t_est
- f_est
- plot (t_est,f_est,'red')
- hold on
- xlabel('time')
- ylabel('frequency')
- title('DE white noise ')
- c=vpa(rms(fi(t_est)-f_est))
- plot (t_est,fi*ones(size(t_est)))
- hold off
0 Comments
Accepted Answer
  Stephan
      
      
 on 2 Dec 2020
        @(x)sum((minus((x(1)),V).*sin(2.*pi.*x(2).*t+x(3)).^2))/n
%                       ^
%                       |
%                       ------- Elementwise multiplication
19 Comments
  Stephan
      
      
 on 3 Dec 2020
				
      Edited: Stephan
      
      
 on 3 Dec 2020
  
			The problem is here:
t_est=[t_est;(ii+n-1)*dt];
this leads to values of t_est ranging from 0...1 - not 0...200 as expected. If you change it to:
t_est=[t_est; (ii-1)*dt*fs];
The values are scaled 0...200. But due to missing insight in the problem i dont know if this is correct. At least the plot seems to be ok.
Since fi is  ascalar, it wont plot - i suggest to use yline instead:
plot(t_est,f_est,'red')
xlim([0 200])
yline(fi)
xlabel('time')
ylabel('frequency')
title('DE white noise')

So once again the whole code:
clear all; close all; clc
fs=200;     %sampling freq.
dt =1/fs;
n=fs/3	%number of samples/cycle
m=3        %no. of cycles
fi=50;
t = linspace(0,200,1+n*m); %data window
v=@(t) (sin(2*pi*fi.*t + 0.3)+ transpose(wgn(1+n*m,1,-40)));
tmax=1;
t_est=[];
f_est=[];
dt=1/fs;
i_max=tmax*fs;
for ii=0:i_max
    V=v(t);
    CostFunction=@(x) sum((V-x(1)*sin(2*pi*x(2)*t+x(3))).^2)/n;    % Cost Function
    nVar=3;            % Number of Decision Variables
    VarSize=[1 nVar];   % Decision Variables Matrix Size
    VarMin=[0,48,0];          % Lower Bound of Decision Variables
    VarMax=[1000,52,2*pi];          % Upper Bound of Decision Variables
    %% DE Parameters
    MaxIt=1000;      % Maximum Number of Iterations
    nPop=50;        % Population Size
    beta=0.5;       % Scaling Factor
    pCR=0.2;        % Crossover Probability
    minCost=1e-10;
    %% Initialization
    empty_individual.Position=[];
    empty_individual.Cost=[];
    BestSol.Cost=inf;
    pop=repmat(empty_individual,nPop,1);
    for i=1:nPop
        pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
        pop(i).Cost=CostFunction(pop(i).Position);
        if pop(i).Cost<BestSol.Cost
            BestSol=pop(i);
        end
    end
    BestCost=zeros(MaxIt,1);
    %% DE Main Loop
    for it=1:MaxIt
        for i=1:nPop
            x=pop(i).Position;
            A=randperm(nPop);
            A(A==i)=[];
            a=A(1);
            b=A(2);
            c=A(3);
            % Mutation
            %beta=unifrnd(beta_min,beta_max);
            y=pop(a).Position+beta.*(pop(b).Position-pop(c).Position);
            y = max(y, VarMin);
            y = min(y, VarMax);
            % Crossover
            z=zeros(size(x));
            j0=randi([1 numel(x)]);
            for j=1:numel(x)
                if j==j0 || rand<=pCR
                    z(j)=y(j);
                else
                    z(j)=x(j);
                end
            end
            NewSol.Position=z;
            NewSol.Cost=CostFunction(NewSol.Position);
            if NewSol.Cost<pop(i).Cost
                pop(i)=NewSol;
                if pop(i).Cost<BestSol.Cost
                    BestSol=pop(i);
                end
            end
        end
        % Update Best Cost
        BestCost(it)=BestSol.Cost;
        % Show Iteration Information
        %disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
        if(minCost>BestSol.Cost)
            break;
        end
    end
    %% Show Results
    disp(['Iteration ' num2str(ii) ': Best Cost = ' num2str(BestSol.Position(2))]);
    t_est=[t_est; (ii-1)*dt*fs];
    f_est=[f_est;BestSol.Position(2)];
end
t_est
f_est
RMSE = sqrt(mean((f_est-fi).^2))
plot(t_est,f_est,'red')
xlim([0 200])
yline(fi)
xlabel('time')
ylabel('frequency')
title('DE white noise')
More Answers (0)
See Also
Categories
				Find more on Gamma Functions in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

