# How do I organise my code?

2 views (last 30 days)
donghun lee on 30 Apr 2020
Commented: donghun lee on 30 Apr 2020
clc
clear;
k_l = 26400; %Linear stiffness
m = 483; %Mass
f_n = sqrt(k_l/m)/(2*pi); %Natural frequency
dv = linspace(0,-1,40); % loop values for l
l = 0.01;
maxRes = zeros(length(dv),1);
count = 1;
for d = dv
A_array = linspace(0,0.06,10);
[om_array, a_array] = meshgrid(Om_array, A_array);
Response_amp = zeros(size(Om_array));
T = 130;
x0 = [0,0];
for i=1:numel(Om_array)
for j=1:numel(A_array)
Om = om_array(i,j);
A = a_array(i,j);
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f = @(t,x) [ x(2); ...
-(2*k_s*(x(1)-(A*sin(Om*t))))* ...
(sqrt((l-d)^2 + (x(1)-(A*sin(Om*t)))^2) - l)/ ...
(m*(sqrt((l-d)^2 + (x(1)-(A*sin(Om*t)))^2))) ];
[t, x] = ode45(f,[100,T],x0);
Response_amp(i,j) = (max(x(:,1)) - min(x(:,1)))/2;
% xval(i) = Om/(2*pi) ;
end
end
maxRes(count) = max(Response_amp(:));
count = count+1;
end
%%%%%%%%%%%%%%figure(count)
grid on
plot(dv,maxRes, 'LineWidth', 1.5)
hold on
k_l = 26400; %Linear stiffness
m = 483; %Mass
dv = linspace(0,-1,40); % loop values for l
maxRes = zeros(length(dv),1);
count = 1;
l = 0.02;
for d = dv
A_array = linspace(0,0.06,10);
[om_array, a_array] = meshgrid(Om_array, A_array);
Response_amp = zeros(size(Om_array));
T = 130;
x0 = [0,0];
for i=1:numel(Om_array)
for j=1:numel(A_array)
Om = om_array(i,j);
A = a_array(i,j);
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f = @(t,x) [ x(2); ...
-(2*k_s*(x(1)-(A*sin(Om*t))))* ...
(sqrt((l-d)^2 + (x(1)-(A*sin(Om*t)))^2) - l)/ ...
(m*(sqrt((l-d)^2 + (x(1)-(A*sin(Om*t)))^2))) ];
[t, x] = ode45(f,[100,T],x0);
Response_amp(i,j) = (max(x(:,1)) - min(x(:,1)))/2;
% xval(i) = Om/(2*pi) ;
end
end
maxRes(count) = max(Response_amp(:));
count = count+1;
end
grid on
plot(dv,maxRes,'LineWidth', 1.5)
hold on
k_l = 26400; %Linear stiffness
m = 483; %Mass
dv = linspace(0,-1,40); % loop values for l
maxRes = zeros(length(dv),1);
count = 1;
l = 0.03;
for d = dv
A_array = linspace(0,0.06,10);
[om_array, a_array] = meshgrid(Om_array, A_array);
Response_amp = zeros(size(Om_array));
T = 130;
x0 = [0,0];
for i=1:numel(Om_array)
for j=1:numel(A_array)
Om = om_array(i,j);
A = a_array(i,j);
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f = @(t,x) [ x(2); ...
-(2*k_s*(x(1)-(A*sin(Om*t))))* ...
(sqrt((l-d)^2 + (x(1)-(A*sin(Om*t)))^2) - l)/ ...
(m*(sqrt((l-d)^2 + (x(1)-(A*sin(Om*t)))^2))) ];
[t, x] = ode45(f,[100,T],x0);
Response_amp(i,j) = (max(x(:,1)) - min(x(:,1)))/2;
% xval(i) = Om/(2*pi) ;
end
end
maxRes(count) = max(Response_amp(:));
count = count+1;
end
hold on
k_l = 26400; %Linear stiffness
m = 483; %Mass
dv = linspace(0,-1,40); % loop values for l
maxRes = zeros(length(dv),1);
count = 1;
l = 0.04;
for d = dv
A_array = linspace(0,0.06,10);
[om_array, a_array] = meshgrid(Om_array, A_array);
Response_amp = zeros(size(Om_array));
T = 130;
x0 = [0,0];
for i=1:numel(Om_array)
for j=1:numel(A_array)
Om = om_array(i,j);
A = a_array(i,j);
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f = @(t,x) [ x(2); ...
-(2*k_s*(x(1)-(A*sin(Om*t))))* ...
(sqrt((l-d)^2 + (x(1)-(A*sin(Om*t)))^2) - l)/ ...
(m*(sqrt((l-d)^2 + (x(1)-(A*sin(Om*t)))^2))) ];
[t, x] = ode45(f,[100,T],x0);
Response_amp(i,j) = (max(x(:,1)) - min(x(:,1)))/2;
% xval(i) = Om/(2*pi) ;
end
end
maxRes(count) = max(Response_amp(:));
count = count+1;
end
grid on
plot(dv,maxRes,'LineWidth', 1.5)
grid on
plot(dv,maxRes,'LineWidth', 1.5)
h = legend('0.01', '0.02', '0.03', '0.04');
h.Title.String = 'l (m)';
set(h,'FontSize',18);
xlabel('Pretension (m)')
ylabel('The maximum response amplitude (m)')
set(gca,'FontSize',17)
Hi, all. This code shows a graph (pretension vs the maximum response amplitude) depending on the value of 'l'. I wish to vary l from 0 to 0.5 but it makes my code too long and therefore it takes ages to plot the graph.
Can anyone help me out on this please?

Serhii Tetora on 30 Apr 2020
You can try do it with loop and function
clc; clear; close all;
k_l = 26400; %Linear stiffness
m = 483; %Mass
dv = linspace(0,-1,40); % loop values for l
l = 0:.01:.05;
for i = 1:length(l)
maxRes(:,i) = maxResfunc(k_l,m,dv,l(i));
end
plot(dv,maxRes,'LineWidth', 1.5)
grid on
h = legend({num2str(l')},'Location','northwest','FontSize',12);
h.Title.String = 'l (m)';
xlabel('Pretension (m)','FontSize',12)
ylabel('The maximum response amplitude (m)','FontSize',12)
function maxRes = maxResfunc(k_l,m,dv,l)
f_n = sqrt(k_l/m)/(2*pi); %Natural frequency
maxRes = zeros(length(dv),1);
count = 1;
for d = dv
A_array = linspace(0,0.06,10);
[om_array, a_array] = meshgrid(Om_array, A_array);
Response_amp = zeros(size(Om_array));
T = 130;
x0 = [0,0];
for i=1:numel(Om_array)
for j=1:numel(A_array)
Om = om_array(i,j);
A = a_array(i,j);
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f = @(t,x) [ x(2); ...
-(2*k_s*(x(1)-(A*sin(Om*t))))* ...
(sqrt((l-d)^2 + (x(1)-(A*sin(Om*t)))^2) - l)/ ...
(m*(sqrt((l-d)^2 + (x(1)-(A*sin(Om*t)))^2))) ];
[t, x] = ode45(f,[100,T],x0);
Response_amp(i,j) = (max(x(:,1)) - min(x(:,1)))/2;
% xval(i) = Om/(2*pi) ;
end
end
maxRes(count) = max(Response_amp(:));
count = count+1;
end
end
donghun lee on 30 Apr 2020
Thank you so much!! It is really helpful. I appreciate your effort.