how to integrate a function with infinite series inside

6 views (last 30 days)
i have this function in the image that i want to integrate and it contains infinite series inside the intergral, i tried many method, but it did not work out.
any thought in how to do this intergration ?

Accepted Answer

Ameer Hamza
Ameer Hamza on 18 Apr 2020
Edited: Ameer Hamza on 18 Apr 2020
For such series, if the sum is convergent, it is useful to approximate it with finite terms instead of using infinite series. You can use sum() and integral() functions to implement this equation. See the following code to see how it can be done
xf = 1;
xe = 2;
xd = 3;
sum1_terms = @(tda_,n) exp(-4.*n.^2.*pi^2.*tda_);
sum2_terms = @(tda_,n) exp(-4.*n.^2.*pi^2.*tda_).*sin(n.*pi.*xf./xe).*cos(n.*pi.*xd.*xf./xe)./(n.*pi.*xf./xe);
sum1 = @(tda_,N) sum(sum1_terms(tda_,1:N));
sum2 = @(tda_,N) sum(sum2_terms(tda_,1:N));
dPwd = @(tda_,N) (1+2*sum1(tda_,N)).*(1+2*sum2(tda_,N));
Pwd = @(tda, N) integral(@(tda_) dPwd(tda_, N), 0, tda, 'ArrayValued', 1);
N_value = 100; % 100 terms will be used in calculations
tda_value = linspace(0,0.01,100);
Pwd_values = zeros(size(tda_value));
for i=1:numel(tda_value)
Pwd_values(i) = Pwd(tda_value(i), N_value);
end
plot(tda_value, Pwd_values)
Following code is a faster version of the above code (about 3x faster), but requires a bit deeper understanding of MATLAB functions
xf = 1;
xe = 2;
xd = 3;
sum1_terms = @(tda_,n) exp(-4.*n.^2.*pi^2.*tda_);
sum2_terms = @(tda_,n) exp(-4.*n.^2.*pi^2.*tda_).*sin(n.*pi.*xf./xe).*cos(n.*pi.*xd.*xf./xe)./(n.*pi.*xf./xe);
sum1 = @(tda_,N) sum(sum1_terms(tda_,(1:N).'));
sum2 = @(tda_,N) sum(sum2_terms(tda_,(1:N).'));
dPwd = @(tda_,N) (1+2*sum1(tda_,N)).*(1+2*sum2(tda_,N));
Pwd = @(tda, N) integral(@(tda_) dPwd(tda_, N), 0, tda);
N_value = 100; % 100 terms will be used in calculations
tda_value = linspace(0,0.01,100);
Pwd_values = zeros(size(tda_value));
for i=1:numel(tda_value)
Pwd_values(i) = Pwd(tda_value(i), N_value);
end
plot(tda_value, Pwd_values)
  2 Comments
Qasim Sahu
Qasim Sahu on 18 Apr 2020
Greeting Hamza,
i appreciate that you take the time and effort to answer my question. This is more than perfect.
thanks a lot

Sign in to comment.

More Answers (0)

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!