invert the function s = L(t) to solve for t.

2 views (last 30 days)
Hyunji Yu
Hyunji Yu on 9 Mar 2020
Answered: SAI SRUJAN on 30 May 2024
syms t;
x(t)= sin(3*t^2)*(12*t + (10*13^(1/2))/13);
y(t)= t*(6*13^(1/2)*t + 5);
z(t)= cos(3*t^2)*(12*t + (10*13^(1/2))/13);
syms tau;
L(t) = vpaintegral(speed(tau), tau, 0, t);
syms s;
solve(s == L(t), t);
I'm trying to invert the function s = L(t) to solve for t, but I don't know how to change the function regarding as t.

Answers (1)

SAI SRUJAN
SAI SRUJAN on 30 May 2024
Hi Hyunji,
I understand that you are trying to invert the function 's=L(t)' to solve for 't'.
The speed '(v(t))' of a particle moving along a path in three-dimensional space is given by the magnitude of its velocity vector, which is the derivative of its position vector, then: ['v(t) = sqrt(dx^2 + dy^2 + dz^2);'].
Please go through the following code sample to proceed further,
syms s t tau;
x(t) = sin(3*t^2)*(12*t + (10*sqrt(13))/13);
y(t) = t*(6*sqrt(13)*t + 5);
z(t) = cos(3*t^2)*(12*t + (10*sqrt(13))/13);
dx = diff(x, t);
dy = diff(y, t);
dz = diff(z, t);
% Speed function v(t)
v(t) = sqrt(dx^2 + dy^2 + dz^2);
% Define L(t) as the integral of v(tau) from 0 to t
L(t) = int(v(tau), tau, 0, t);
tSol = vpasolve(s == L(t), t);
For a comprehensive understanding of the 'vpasolve' function in MATLAB, please refer to the following documentation.
I hope this helps!

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!