Plotting graph with for-end loop in

24 views (last 30 days)
How do i plot a graph of the data in the for-end loop.
Looking to plot a varying Vf against Ex,Ey,Gxy,vxy.
>> %Setting all original variables
Em=2.4e9;
Ef=76e9;
vm=0.34;
vf=0.22;
theta=30;
for Vf=0:0.1:1
Vm=1-Vf;
%Finding shear and bulk modulus'
Gm=Em/(2*(1+vm));
Gf=Ef/(2*(1+vf));
Km=Em/(3*(1-2*vm));
Kf=Ef/(3*(1-2*vf));
%Find k*,E1,v12,G12
k=(Km*(Kf+Gm)*Vm+Kf*(Km+Gm)*Vf)/((Kf+Gm)*Vm+(Km+Gm)*Vf);
E1=Em*Vm+Ef*Vf;
v12=vm*Vm+vf*Vf+((vf-vm)*((1/Km)-(1/Kf))*Vm*Vf)/((Vm/Kf)+(Vf/Km)+(1/Gm));
G12=Gm+(Vf/((1/(Gf-Gm))+(Vm/(2*Gm))));
%Beta's, gamma's, alphas and roe
betam=1/(3-4*vm);
betaf=1/(3-4*vf);
gamma=Gf/Gm;
alpha=(betam-gamma*betaf)/(1+gamma*betaf);
roe=(gamma+betam)/(gamma-1);
%G23, E2 and v23
G23=Gm*(1+((1+betam)*Vf)/(roe-(1+(3*betam^2*Vm^2)/(alpha*Vf^3+1))*Vf));
E2=4/((1/G23)+(1/k)+(4*v12^2/E1));
v23=(E2/2*G23)-1;
%Creating reduced lamina stiffness matrix
Z=(E1-v12^2*E2)/E1;
Q11=E1/Z;
Q22=E2/Z;
Q12=v12*E2/Z;
Q66=G12;
Q=[Q11,Q12,0;Q12,Q22,0;0,0,Q66];
%Transformation matrices
n=sind(theta);
m=cosd(theta);
q11=Q11*m^4+Q22*n^4+2*m^2*n^2*(Q12+2*Q66);
q12=m^2*n^2*(Q11+Q22-4*Q66)+(m^4+n^4)*Q12;
q16=(Q11*m^2-Q22*n^2-(Q12+2*Q66)*(m^2-n^2))*m*n;
q22=Q11*n^4+Q22*m^4+2*m^2*n^2*(Q12+2*Q66);
q26=(Q11*n^2-Q22*m^2+(Q12+2*Q66)*(m^2-n^2))*m*n;
q66=(Q11+Q22+Q12*2)*m^2*n^2+Q66*((m^2-n^2)^2);
q=[q11,q12,q16;q12,q22,q26;q16,q26,q66];
%Finally calculating the laminate properties
Ex=q11-q12^2/q22
Ey=q22-q12^2/q11
Gxy=q66
vxy=q12/q22
end

Accepted Answer

Bhaskar R
Bhaskar R on 18 Feb 2020
%Setting all original variables
Em=2.4e9;
Ef=76e9;
vm=0.34;
vf_samll=0.22;
theta=30;
Vf=0:0.1:1;
Ex = zeros(1, length(Vf));
Ey = zeros(1, length(Vf));
Gxy = zeros(1, length(Vf));
vxy = zeros(1, length(Vf));
c = 1;
for ii = 1:length(Vf)
Vm=1-Vf(ii);
%Finding shear and bulk modulus'
Gm=Em/(2*(1+vm));
Gf=Ef/(2*(1+vf_samll));
Km=Em/(3*(1-2*vm));
Kf=Ef/(3*(1-2*vf_samll));
%Find k*,E1,v12,G12
k=(Km*(Kf+Gm)*Vm+Kf*(Km+Gm)*Vf(ii))/((Kf+Gm)*Vm+(Km+Gm)*Vf(ii));
E1=Em*Vm+Ef*Vf(ii);
v12=vm*Vm+vf_samll*Vf(ii)+((vf_samll-vm)*((1/Km)-(1/Kf))*Vm*Vf(ii))/((Vm/Kf)+(Vf(ii)/Km)+(1/Gm));
G12=Gm+(Vf(ii)/((1/(Gf-Gm))+(Vm/(2*Gm))));
%Beta's, gamma's, alphas and roe
betam=1/(3-4*vm);
betaf=1/(3-4*vf_samll);
gamma=Gf/Gm;
alpha=(betam-gamma*betaf)/(1+gamma*betaf);
roe=(gamma+betam)/(gamma-1);
%G23, E2 and v23
G23=Gm*(1+((1+betam)*Vf(ii))/(roe-(1+(3*betam^2*Vm^2)/(alpha*Vf(ii)^3+1))*Vf(ii)));
E2=4/((1/G23)+(1/k)+(4*v12^2/E1));
v23=(E2/2*G23)-1;
%Creating reduced lamina stiffness matrix
Z=(E1-v12^2*E2)/E1;
Q11=E1/Z;
Q22=E2/Z;
Q12=v12*E2/Z;
Q66=G12;
Q=[Q11,Q12,0;Q12,Q22,0;0,0,Q66];
%Transformation matrices
n=sind(theta);
m=cosd(theta);
q11=Q11*m^4+Q22*n^4+2*m^2*n^2*(Q12+2*Q66);
q12=m^2*n^2*(Q11+Q22-4*Q66)+(m^4+n^4)*Q12;
q16=(Q11*m^2-Q22*n^2-(Q12+2*Q66)*(m^2-n^2))*m*n;
q22=Q11*n^4+Q22*m^4+2*m^2*n^2*(Q12+2*Q66);
q26=(Q11*n^2-Q22*m^2+(Q12+2*Q66)*(m^2-n^2))*m*n;
q66=(Q11+Q22+Q12*2)*m^2*n^2+Q66*((m^2-n^2)^2);
q=[q11,q12,q16;q12,q22,q26;q16,q26,q66];
%Finally calculating the laminate properties
Ex(c)=q11-q12^2/q22;
Ey(c)=q22-q12^2/q11;
Gxy(c)=q66;
vxy(c)=q12/q22;
c =c+1;
end
plot(Vf, Ex, Vf, Ey, Vf, Gxy, Vf, vxy);
grid on , legend({'Ex', 'Ey', 'Gxy', 'vxy'})

More Answers (0)

Categories

Find more on Loops and Conditional Statements in Help Center and File Exchange

Products


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!