Pdepe: Spatial discretization has failed. Discretization supports only parabolic and elliptic equations, with flux term involving spatial derivative.
    13 views (last 30 days)
  
       Show older comments
    
Hi,
I was trying to solve PDE about diffusion in solutions, which yields:
>> test2
Error using pdepe (line 293)
Spatial discretization has failed. Discretization supports only parabolic and elliptic equations, with flux term involving spatial derivative.
Error in test2 (line 5)
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
Please see the code below
function test2 
m = 0;
x = [0 0.01 0.1 0.5 1 5 10 20 30 50 100 200];
t = [0.001 0.005 0.01 0.05 0.1 0.5 1 1.5 2 5 10 100];
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
u3 = sol(:,:,3);
u4 = sol(:,:,4);
figure;
surf(x,t,u1);
title('u1(x,t)');
xlabel('Distance x');
ylabel('Time t');
figure;
surf(x,t,u2);
title('u2(x,t)');
xlabel('Distance x');
ylabel('Time t');
figure;
surf(x,t,u3);
title('u3(x,t)');
xlabel('Distance x');
ylabel('Time t');
figure;
surf(x,t,u4);
title('u4(x,t)');
xlabel('Distance x');
ylabel('Time t');
%----------------------------------------------------
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1; 1; 1]; 
f = [1.91e-9; 0.923e-9; 1.19e-9; 5.27e-9] .* DuDx;
s = [(-2.23e3.*u(1).*u(4)+5.02e-5.*u(2)-200*1*0.6/(96485*2*0.1)); 
    (2.23e3.*u(1).*u(4)-5.02e-5.*u(2)-6e9.*u(2).*u(4)+1.29e6.*u(3));
    (6e9.*u(2).*u(4)-1.29e6.*u(3)); 
    (-2.23e3.*u(1).*u(4)+5.02e-5.*u(2)-6e9.*u(2).*u(4)+1.29e6.*u(3)+200*0.6/(96485*0.1)) ];
%----------------------------------------------------------
function u0 = pdex4ic(x)
u0 = [ 0; 0; 0; 1];
%---------------------------------------------------------------
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [ul(1)-24.5e-3; 0; 0; 0];
ql = [0; 1; 1; 1];
pr = [0; 1; 1; ur(4)-1];
qr = [1; 0; 0; 0];
0 Comments
Accepted Answer
  Bill Greene
      
 on 19 Nov 2019
        Your boundary conditions (BC) are specified incorrectly; a qr(i) value of zero and pr(i)=constant is not a valid BC.
Since you did not provide a mathematical description of your problem, it is impossible to say what the correct BC should be. Do you perhaps want pr(2)=ur(2)-1 and pr(3)=ur(3)-1?
More Answers (0)
See Also
Categories
				Find more on Boundary Conditions in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
