Hi, 
The following code runs fine when my Ra values are low or I reduce the t to very small values. But as soon as I incerese t or Ra the code gives the following error. 
"Warning: Failure at t=5.652476e-05.  Unable to meet integration tolerances without reducing the step size below the smallest
value allowed (1.084202e-19) at time t. "
I am trying to solve convective heat transfer equation in a vessel heated from the bottom. B.C are that at the top I have a stress free and adiabatic surface. At the bottom I have a constant flux and no-slip. 
%% In this code u1= v (vertical velocity), u2= Temperature, y is the vertical dimension
%% setting up the problem parameters
L=2; %% total depth, in positive units 
y= linspace (0,L,30); %% space mesh
t= linspace(0,0.00015,3); %% time mesh 
m=0; %% part of pdepe arguments, we have cartisian coordinate system, otherwise m changes 
sol = pdepe(m,@heatpde,@heatic,@heatbc,y,t); %% solving system of PDEs 
%% for mapping the result 
u1 = sol(:,:,1); %% obtained Velocity profile
u2 = sol(:,:,2); %% obtained Temperature Profile 
plot(u2,-y)
%plot(u1,-y)
%% defining PDE function
function [c,f,s] = heatpde(y,t,u,dudy)
%properties of fluid under consideration 
Ra= 1*10^7; %% Raynold Number 
Pr= 7; %% Prandlt Number 
R= 1; %% density 
G= 10; % gravitational acceleration 
% function matrices 
c=[1;1]; 
f= [Pr;1].*dudy; %% flux term 
F1= Ra *Pr *u(2);
F2= Ra *Pr * R * G;
F3= u(1)* dudy(1); 
F4= 2.718^(-y);
F5= u(1)* dudy(2);
s= [(F1+F2-F3);(F4-F5)]; %% source term 
end
%% Initial Conditions 
function u0= heatic(y)
u0 = [0;10]; %%initial velocity and temperature  
end
%% Boundary Conditions 
function [pt,qt,pb,qb] = heatbc (yt,ut,yb,ub,t)
F5= -2.718^(-2);
pt= [0; 0]; %%top B.C, 
qt= [1; 1]; %% top B.C, 
pb= [ub(1); F5]; %%bottom B.C, 
qb= [0; 1]; %% bottom B.C, p+(q*f)=0 
end