How to solve extra long equations with multiple unknowns?

3 views (last 30 days)
Hi, I have two equations with 2 unknowns. In my case, the equations are too long with a number of transcendental functions. I tried Simplify command with other stricting strategy to solve but neither of them worked. How can I solve such Equations? Any hints/tips will be appreciated.
Here are my equations with unknown 'W' and 's':
A = (131072*29284206217013915^(1/2))/(625*(((6987459706243381*W - (6987459706243381*W - ((188416*(9223372036854775808*W - 5856841243402783)^2)/12869035935211193115234375 + (1184898369045330659387084111872*2^(1/2))/(87890625*((2305843009213693952*W + 17570523730208349)/W)^(1/2)) + 1343418817046756753408/87890625)/log(((2305843009213693952*W^2)/5856841243402783 + 127/25000)/W))/((5856841243402783*tanh((73786976294838206464*s)/5856841243402783)*exp(-exp(233/100 - (583378281331064569856*W)/146421031085069575)/10))/(9223372036854775808*s) + 1) + ((188416*(9223372036854775808*W - 5856841243402783)^2)/12869035935211193115234375 + (1184898369045330659387084111872*2^(1/2))/(87890625*((2305843009213693952*W + 17570523730208349)/W)^(1/2)) + 1343418817046756753408/87890625)/log(((2305843009213693952*W^2)/5856841243402783 + 127/25000)/W))*(191916973863822393344*tanh((73786976294838206464*s)/5856841243402783) + 604462909807314587353088*s*exp(exp(233/100 - (583378281331064569856*W)/146421031085069575)/10) + 48167231430905666015625*W*log(((2305843009213693952*W^2)/5856841243402783 + 127/25000)/W)*tanh((73786976294838206464*s)/5856841243402783)))/(log(((2305843009213693952*W^2)/5856841243402783 + 127/25000)/W)*(5856841243402783*tanh((73786976294838206464*s)/5856841243402783) + 9223372036854775808*s*exp(exp(233/100 - (583378281331064569856*W)/146421031085069575)/10))))^(1/2)) == sym('82.9367')
B = 4848604884312330996192171599799452960064720961461794373632/(390625*((30197372856938873356783865240544523007076102631740932096*W + 1196803464977447626879572441392246924444885789442048*log(2*(2*W + s)^(1/2) + 2*2^(1/2)*W^(1/4)*(W + s)^(1/4)) + 1196803464977447626879572441392246924444885789442048*log(1/((2*W + s)^(1/2) - 2^(1/2)*W^(1/4)*(W + s)^(1/4))) + 12207395342769963168946347226992069644318890998628352*log(coth((50000*s*pi)/127)) - ((31721688620111212543053501011329024*(9223372036854775808*W - 5856841243402783)^2)/501342689882353 + (80464336588145820923004586700794002638127030245202533672503105028096*W^(1/2))/(1953125*(576460752303423488*W + 4392630932552087)^(1/2)) + 66056980683050248153209450614638153187005796318183424)/(log(W) - log((2305843009213693952*W^2)/5856841243402783 + 127/25000)) - ((715913401141667049096758589128704*W + ((133952*(9223372036854775808*W - 5856841243402783)^2)/89296875 + (28614490977577140881519611179794734764726943744*W^(1/2))/(29296875*(576460752303423488*W + 4392630932552087)^(1/2)) + 1566065959909660640395860639744)/(log(W) - log((2305843009213693952*W^2)/5856841243402783 + 127/25000)))*(27153607276500459978752*s + 1112053888018253184))/s)*(227645271101905578581467981701973076307609129058304*W + 92026410225101700192114242347788464628541947904*log(2*(2*W + s)^(1/2) + 2*2^(1/2)*W^(1/4)*(W + s)^(1/4)) + 92026410225101700192114242347788464628541947904*log(1/((2*W + s)^(1/2) - 2^(1/2)*W^(1/4)*(W + s)^(1/4))) + 92026410225101679909704638696118040681290661888*log(coth((50000*s*pi)/127)) - 43872128685689108753488251272750948277693341237248/(5859375*s*(log(W) - log((2305843009213693952*W^2)/5856841243402783 + 127/25000))) - 15943838407882170125382859023155862270216286202583056384/(17578125*log(W) - 17578125*log((2305843009213693952*W^2)/5856841243402783 + 127/25000)) - (9396058564731152614103031140650616447679070208*W)/(5*s)))^(1/2)) == sym('37.6092')
This equations sometimes results in following:
struct with fields:
W: [0×1 sym]
s: [0×1 sym]
But these fields don't have any results.

Accepted Answer

John D'Errico
John D'Errico on 16 May 2019
Edited: John D'Errico on 16 May 2019
You have two fairly complicated equations, in two unknowns. Why do you expect an analytical solution to exist at all? I'd have been utterly surprised if one did. It is better if you just subtract the constant right hand side, because now you can plot the surfaces.
A = (131072*29284206217013915^(1/2))/(625*(((6987459706243381*W - (6987459706243381*W - ((188416*(9223372036854775808*W - 5856841243402783)^2)/12869035935211193115234375 + (1184898369045330659387084111872*2^(1/2))/(87890625*((2305843009213693952*W + 17570523730208349)/W)^(1/2)) + 1343418817046756753408/87890625)/log(((2305843009213693952*W^2)/5856841243402783 + 127/25000)/W))/((5856841243402783*tanh((73786976294838206464*s)/5856841243402783)*exp(-exp(233/100 - (583378281331064569856*W)/146421031085069575)/10))/(9223372036854775808*s) + 1) + ((188416*(9223372036854775808*W - 5856841243402783)^2)/12869035935211193115234375 + (1184898369045330659387084111872*2^(1/2))/(87890625*((2305843009213693952*W + 17570523730208349)/W)^(1/2)) + 1343418817046756753408/87890625)/log(((2305843009213693952*W^2)/5856841243402783 + 127/25000)/W))*(191916973863822393344*tanh((73786976294838206464*s)/5856841243402783) + 604462909807314587353088*s*exp(exp(233/100 - (583378281331064569856*W)/146421031085069575)/10) + 48167231430905666015625*W*log(((2305843009213693952*W^2)/5856841243402783 + 127/25000)/W)*tanh((73786976294838206464*s)/5856841243402783)))/(log(((2305843009213693952*W^2)/5856841243402783 + 127/25000)/W)*(5856841243402783*tanh((73786976294838206464*s)/5856841243402783) + 9223372036854775808*s*exp(exp(233/100 - (583378281331064569856*W)/146421031085069575)/10))))^(1/2)) - sym('82.9367');
B = 4848604884312330996192171599799452960064720961461794373632/(390625*((30197372856938873356783865240544523007076102631740932096*W + 1196803464977447626879572441392246924444885789442048*log(2*(2*W + s)^(1/2) + 2*2^(1/2)*W^(1/4)*(W + s)^(1/4)) + 1196803464977447626879572441392246924444885789442048*log(1/((2*W + s)^(1/2) - 2^(1/2)*W^(1/4)*(W + s)^(1/4))) + 12207395342769963168946347226992069644318890998628352*log(coth((50000*s*pi)/127)) - ((31721688620111212543053501011329024*(9223372036854775808*W - 5856841243402783)^2)/501342689882353 + (80464336588145820923004586700794002638127030245202533672503105028096*W^(1/2))/(1953125*(576460752303423488*W + 4392630932552087)^(1/2)) + 66056980683050248153209450614638153187005796318183424)/(log(W) - log((2305843009213693952*W^2)/5856841243402783 + 127/25000)) - ((715913401141667049096758589128704*W + ((133952*(9223372036854775808*W - 5856841243402783)^2)/89296875 + (28614490977577140881519611179794734764726943744*W^(1/2))/(29296875*(576460752303423488*W + 4392630932552087)^(1/2)) + 1566065959909660640395860639744)/(log(W) - log((2305843009213693952*W^2)/5856841243402783 + 127/25000)))*(27153607276500459978752*s + 1112053888018253184))/s)*(227645271101905578581467981701973076307609129058304*W + 92026410225101700192114242347788464628541947904*log(2*(2*W + s)^(1/2) + 2*2^(1/2)*W^(1/4)*(W + s)^(1/4)) + 92026410225101700192114242347788464628541947904*log(1/((2*W + s)^(1/2) - 2^(1/2)*W^(1/4)*(W + s)^(1/4))) + 92026410225101679909704638696118040681290661888*log(coth((50000*s*pi)/127)) - 43872128685689108753488251272750948277693341237248/(5859375*s*(log(W) - log((2305843009213693952*W^2)/5856841243402783 + 127/25000))) - 15943838407882170125382859023155862270216286202583056384/(17578125*log(W) - 17578125*log((2305843009213693952*W^2)/5856841243402783 + 127/25000)) - (9396058564731152614103031140650616447679070208*W)/(5*s)))^(1/2)) - sym('37.6092');
fA = matlabFunction(A);
fB = matlabFunction(B);
HA = fcontour(fA,[0,.00100,-.001,.001]);
HA.LevelList = 0;
HA.LineColor = 'r';
hold on
HB = fcontour(fB,[0,.00100,-.001,.001]);
HB.LevelList = 0;
HB.LineColor = 'g';
legend('A','B')
xlabel W
ylabel s
grid on
That plot enables me to find the intersection of the two level lines, and thus the solution. Remember that a contour plot can act as a graphical version of a rootfinder.
You CANNOT use solve though. You MUST use a numerical solver.
Ws = vpasolve(A,B,W,s,[.0003 .0001])
Ws =
struct with fields:
W: [1×1 sym]
s: [1×1 sym]
Ws.W
ans =
0.0003813215765050440174161487085986
Ws.s
ans =
0.00012687605236583108888940489516916
  1 Comment
Chandan Roy
Chandan Roy on 16 May 2019
Thanks a lot. I didn't think that the solution can be done in this way. Your answer is corrrect. I had the results since I was synthesizing the problem. Thanks again.

Sign in to comment.

More Answers (0)

Categories

Find more on MATLAB in Help Center and File Exchange

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!