Multivariate nonlinear regression model fitting

60 views (last 30 days)
I apologize since I am new to matlab
I have built a multivariate model to describe experimental data and I am trying to set up a nonlinear regression fitting to extract parameters for the model.
The model has two dependent variables that depend nonlinearly on two independent variables The model has three parameters.
I found the mvregress function, but as I understand it, it is a multivariate linear regression, which does not apply to my problem.
Thank you in advance for any help

Accepted Answer

Anton Semechko
Anton Semechko on 6 Jul 2018
Edited: Anton Semechko on 6 Jul 2018
If the function you are trying to fit is linear in terms of model parameters, you can estimate these parameters using linear least squares ( 'lsqlin' documentation). If there is a nonlinear relashionship between model parameters and the function, use nonlinear least squares ( 'lsqnonlin' documentation). For example, F(x,y,c1,c2,c3)=c1*x^2 + c2*exp(y) + c3*cos(x-y), is nonlinear in terms of (x,y), but is a linear function of (c1,c2,c3) (i.e., model parameters).
  6 Comments
Jorge
Jorge on 6 Jul 2018
I see, fantastic! Thank you!
If I can ask further, is there a simple way to obtain confidence intervals for the parameters? maybe using a bootstrap method? Thank you!
Anton Semechko
Anton Semechko on 6 Jul 2018
Edited: Anton Semechko on 6 Jul 2018
Bootstraping is one option. Another option is to use jack-knife (i.e., leave-one-out cross-validation). Although if you have a large dataset, boostraping may be a more effective option (from computational perspective).

Sign in to comment.

More Answers (0)

Products


Release

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!