Reparameterize 3D points with respect to PCA vector
4 views (last 30 days)
Show older comments
Ayala Carl
on 12 Jun 2018
Edited: Anton Semechko
on 12 Jun 2018
Hi, I am attempting to reparameteraize a point cloud about a calculated vector computed via PCA. I would like to change all my 3D points so that the specific (largest variance ) vector calculated lays flat on the x axis starting at 0,0. This way I have a reference for future analysis.
Thanks in advance.
0 Comments
Accepted Answer
Anton Semechko
on 12 Jun 2018
Edited: Anton Semechko
on 12 Jun 2018
Here is a quick demo:
function pca_point_cloud_demo
% Get random rotation matrix
r=randn(3,1);
r=r/norm(r); % direction of rotation vector
t=(50*rand(1)+25)*(pi/180); % rotation amount; between 25 and 75 degrees
r=t*r; % random rotation vector
K=zeros(3);
K(1,2)=-r(3);
K(1,3)= r(2);
K(2,3)=-r(1);
K=K-K'; % skew symmetric matrix
R=expm(K); % rotation matrix corresponding to r
% Simulate uniformly distributed point cloud
N=1E3;
X=2*rand(N,3)-1;
idx=sum(X.^2,2)>1;
X(idx,:)=[];
% Non-uniformly scale, rotate, and translate X
S=diag(sort(5*rand(1,3),'descend'));
t=10*randn(1,3);
X=bsxfun(@plus,(R*S*X')',t);
% Do PCA on X
X_ave=mean(X,1); % centroid
dX=bsxfun(@minus,X,X_ave);
C=dX'*dX; % covariance matrix
[U,~]=svd(C);
U(:,3)=cross(U(:,1),U(:,2)); % make sure there is no reflection
% Transformation that aligns centroid of X with the origin and its
% prinicial axes with Cartesian basis vectors
T1=eye(4); T1(1:3,4)=-X_ave(:);
T2=eye(4); T2(1:3,1:3)=U';
T=T2*T1;
% Apply T to X to get Y
Y=X;
Y(:,4)=1;
Y=(T*Y')';
Y(:,4)=[];
% PCA-based bounding box (for better visualization)
BBo=unit_cube_mesh;
L=max(Y)-min(Y);
V=bsxfun(@times,L,BBo.vertices);
V=bsxfun(@plus,V,min(Y));
BBo.vertices=V; % BB around Y
V(:,4)=1;
V=(T\V')';
V(:,4)=[];
BB=BBo;
BB.vertices=V; % BB around X; same as BBo but rotated and traslated
% Visualize X and Y
figure('color','w')
subplot(1,2,1)
plot3(X(:,1),X(:,2),X(:,3),'.k','MarkerSize',20)
axis equal
set(get(gca,'Title'),'String','Original Point Cloud','FontSize',20)
view([20 20])
hold on
h=patch(BB);
set(h,'FaceColor','b','FaceAlpha',0.25,'EdgeColor','r')
subplot(1,2,2)
plot3(Y(:,1),Y(:,2),Y(:,3),'.k','MarkerSize',20)
axis equal
set(get(gca,'Title'),'String','After PCA Normalization','FontSize',20)
view([20 20])
hold on
h=patch(BBo);
set(h,'FaceColor','b','FaceAlpha',0.25,'EdgeColor','r')
function fv=unit_cube_mesh
% Construct quadrilateral mesh of a unit cube with edges along x-, y-, and
% z-axes, and one corner at the origin.
X=[0 0 0; ...
1 0 0; ...
1 1 0; ...
0 1 0; ...
0 0 1; ...
1 0 1; ...
1 1 1; ...
0 1 1];
F=[1 4 3 2;
5 6 7 8;
2 3 7 6;
3 4 8 7;
1 5 8 4;
1 2 6 5];
fv.faces=F;
fv.vertices=X;
0 Comments
More Answers (0)
See Also
Categories
Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!