Displaying the answer of Newton's method for multiple roots?
4 views (last 30 days)
Show older comments
Hello. I'm looking for a way to display my solutions for a Newton's method. There are 4 roots in my interval.
roots=[-0.0505 1.3232 1.3636 2.3333] %initial guesses corresponding to the 4 roots.
The trouble i'm having is that the script only shows the results for first root using -0.0505, while m reaches the value 4. I don't know why it cant display the other results for m=2,3,4. What could be the problem? Thanks!
m=1;
while m<=length(roots)
x=roots(m); % initial guess for the root
tol=10e-8;
fprintf(' k xk fx dfx \n');
for k=1:50 % iteration number
fx=sin(x^(2))+x^(2)-2*x-0.09;
dfx=(2*(x*cos(x^2)+x-1));
fprintf('%3d %12.8f %12.8f %12.8f \n', k,x,fx,dfx);
x=x-fx/dfx;
m=m+1;
if abs(fx/dfx)<tol
return;
end
end
end
RUN
k xk fx dfx
1 -0.05050505 0.01611162 -2.20201987
2 -0.04318831 0.00010707 -2.17275307
3 -0.04313903 0.00000000 -2.17255596
0 Comments
Accepted Answer
Sophie
on 26 Oct 2016
for k=1:50
fx=sin(x^(2))+x^(2)-2*x-0.09;
dfx=(2*(x*cos(x^2)+x-1));
fprintf('%3d %12.8f %12.8f %12.8f \n', k,x,fx,dfx);
x=x-fx/dfx;
m=m+1;
You increase m on each iteration step.
3 Comments
More Answers (1)
Sophie
on 26 Oct 2016
Obtained solution: Main code
m=1;
fprintf(' k xk fx dfx \n');
roots=[-0.0505 1.3232 1.3636 2.3333];
while m<=length(roots)
k=[];x=[];fx=[];dfx=[];
[k,x,fx,dfx]=Newton(roots(m));
for i=1:length(k)
fprintf('%3d %12.8f %12.8f %12.8f \n', k(i),x(i),fx(i),dfx(i));
end
m=m+1;
fprintf('\n');
end
Newton
function [kk,x,fx,dfx]=Newton(initialguess)
x=initialguess;
kk=[];fx=[];dfx=[];
tol=10e-8;
for k=1:50 % iteration number
kk(end+1)=k;
fx(end+1)=sin(x(end)^(2))+x(end)^(2)-2*x(end)-0.09;
dfx(end+1)=(2*(x(end)*cos(x(end)^2)+x(end)-1));
x(end+1)=x(end)-fx(end)/dfx(end);
if abs(fx(end)/dfx(end))<tol
return;
end
end
end
0 Comments
See Also
Categories
Find more on Performance and Memory in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!