How to generate new result points based on known model curve?
38 views (last 30 days)
Show older comments
Hi All,
i do have an existing curve built based on known x and y.
I want to use the model curve to generate new data points. considering:
x=[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]
and y with lower and upper limits of:
y=[109.601, ... , 10.96007]
On model curve point 570 & 26.5 would correspond to 100 & 109.601 while point 138 & 385.1 to 10 & 10.96007
Existing curve based on:
x=[570, 565.2, 560.4, 555.6, 550.8, 546, 541.2, 536.4, 531.6, 526.8, 522, 517.2, 512.4, 507.6, 502.8, 498, 493.2, 488.4, 483.6, 478.8, 474, 469.2, 464.4, 459.6, 454.8, 450, 445.2, 440.4, 435.6, 430.8, 426, 421.2, 416.4, 411.6, 406.8, 402, 397.2, 392.4, 387.6, 382.8, 378, 373.2, 368.4, 363.6, 358.8, 354, 349.2, 344.4, 339.6, 334.8, 330, 325.2, 320.4, 315.6, 310.8, 306, 301.2, 296.4, 291.6, 286.8, 282, 277.2, 272.4, 267.6, 262.8, 258, 253.2, 248.4, 243.6, 238.8, 234, 229.2, 224.4, 219.6, 214.8, 210, 205.2, 200.4, 195.6, 190.8, 186, 181.2, 176.4, 171.6, 166.8, 162, 157.2, 152.4, 147.6, 142.8, 138]
y=[26.5, 36.5, 46.3, 55.9, 65.2, 74.3, 83.2, 91.8, 100.2, 108.4, 116.4, 124.2, 131.8, 139.2, 146.4, 153.5, 160.3, 167, 173.5, 179.9, 186.1, 192.1, 198, 203.7, 209.3, 214.8, 220.1, 225.3, 230.3, 235.2, 240, 244.7, 249.2, 253.7, 258, 262.2, 266.3, 270.3, 274.2, 278.1, 281.8, 285.4, 288.9, 292.4, 295.7, 299, 302.2, 305.3, 308.3, 311.2, 314.1, 316.9, 319.6, 322.3, 324.9, 327.4, 329.9, 332.3, 334.6, 336.9, 339.1, 341.3, 343.4, 345.5, 347.5, 349.4, 351.4, 353.2, 355, 356.8, 358.5, 360.2, 361.8, 363.4, 365, 366.5, 368, 369.4, 370.8, 372.2, 373.5, 374.8, 376.1, 377.3, 378.5, 379.7, 380.9, 382, 383.1, 384.1, 385.1]
Thank you.
0 Comments
Answers (1)
dpb
on 26 Oct 2024 at 16:08
Edited: dpb
on 26 Oct 2024 at 18:14
x=[570, 565.2, 560.4, 555.6, 550.8, 546, 541.2, 536.4, 531.6, 526.8, 522, 517.2, 512.4, 507.6, 502.8, 498, 493.2, 488.4, 483.6, 478.8, 474, 469.2, 464.4, 459.6, 454.8, 450, 445.2, 440.4, 435.6, 430.8, 426, 421.2, 416.4, 411.6, 406.8, 402, 397.2, 392.4, 387.6, 382.8, 378, 373.2, 368.4, 363.6, 358.8, 354, 349.2, 344.4, 339.6, 334.8, 330, 325.2, 320.4, 315.6, 310.8, 306, 301.2, 296.4, 291.6, 286.8, 282, 277.2, 272.4, 267.6, 262.8, 258, 253.2, 248.4, 243.6, 238.8, 234, 229.2, 224.4, 219.6, 214.8, 210, 205.2, 200.4, 195.6, 190.8, 186, 181.2, 176.4, 171.6, 166.8, 162, 157.2, 152.4, 147.6, 142.8, 138];
y=[26.5, 36.5, 46.3, 55.9, 65.2, 74.3, 83.2, 91.8, 100.2, 108.4, 116.4, 124.2, 131.8, 139.2, 146.4, 153.5, 160.3, 167, 173.5, 179.9, 186.1, 192.1, 198, 203.7, 209.3, 214.8, 220.1, 225.3, 230.3, 235.2, 240, 244.7, 249.2, 253.7, 258, 262.2, 266.3, 270.3, 274.2, 278.1, 281.8, 285.4, 288.9, 292.4, 295.7, 299, 302.2, 305.3, 308.3, 311.2, 314.1, 316.9, 319.6, 322.3, 324.9, 327.4, 329.9, 332.3, 334.6, 336.9, 339.1, 341.3, 343.4, 345.5, 347.5, 349.4, 351.4, 353.2, 355, 356.8, 358.5, 360.2, 361.8, 363.4, 365, 366.5, 368, 369.4, 370.8, 372.2, 373.5, 374.8, 376.1, 377.3, 378.5, 379.7, 380.9, 382, 383.1, 384.1, 385.1];
hAx=subplot(2,1,1);
plot(x,y,'x')
xlabel('X'),ylabel('Y')
ix=find(x==138); % locate the two target points; find the second
[x(ix) y(ix)]
hold on
ix=[1;ix]; % the first is by inspection; same idea as above if not
scatter(x(ix),y(ix),'r','filled') % show them on plot
% 570 & 26.5 would correspond to 100 & 109.601 while point 138 & 385.1 to 10 & 10.96007
X=[100;10]; % desired scaled X, Y end points
Y=[109.601;10.96007];
bx=polyfit(x(ix),X,1); % the linear mapping of x-->X range
by=polyfit(y(ix),Y,1); % and ditto for y-->Y
xs=polyval(bx,x); % new x at each previous
ys=polyval(by,y); % ditto y
hAx(2)=subplot(2,1,2);
plot(xs,ys,'*') % plot the rescaled results
xlabel('Xscaled'),ylabel('Yscaled')
xlim(polyval(bx,xlim(hAx(1)))), ylim([0 120]), grid on % set xlim to match unscaled to compare
You can fit the transformed data to some interpolating function or just interpolate with the new data arrays over the scaled range; your choice.
The "trick" is to just do a linear transformation from one scale to the other; with the two points one can calculate the two slopes and interecepts by hand, but in MATLB it's simpler to just use the builtin poly function twins...
1 Comment
John D'Errico
on 26 Oct 2024 at 21:38
This is how I would interpret the request. But it is just a wild guess.
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!