How to find the intersection of linear regression model and yline

4 views (last 30 days)
Say I have a table with the following values:
T(:,1) = [0 1 2 3 4 5]
T(:,2) = [0 1 2 3 4 5]
I want to be able to predict values so I fit a simple linear regression model to it. I also want to extract the X value for when the lin reg model intersects a value Y = 4.3. Is there a way to find the coordinates of this intersection?

Accepted Answer

Star Strider
Star Strider on 12 Jun 2024
Use the interp1 function for this —
T(:,1) = [0 1 2 3 4 5].';
T(:,2) = [0 1 2 3 4 5].';
x = T(:,1);
y = T(:,2);
p = polyfit(x, y, 1)
p = 1x2
1.0000 0.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
f = polyval(p, x);
ylv = 4.3;
xv = interp1(f, x, ylv)
xv = 4.3000
figure
plot(x, y, '.', 'DisplayName','Data')
hold on
plot(x, f, '-r', 'DisplayName','Regression')
plot(xv, ylv, 'ms', 'DisplayName','Intersection Of ‘yline’')
hold off
yline(ylv, '--k', 'DisplayName','yline')
xlabel('x')
ylabel('y')
legend('Location','best')
.

More Answers (1)

John D'Errico
John D'Errico on 12 Jun 2024
Pretty boring data.
T(:,1) = [0 1 2 3 4 5];
T(:,2) = [0 1 2 3 4 5];
P = polyfit(T(:,1),T(:,2),1)
P = 1x2
1.0000 0.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
a = P(1)
a = 1.0000
b = P(2)
b = 3.1322e-16
They are the coefficients of the linear polynomial model. The model is of the form:
Y = a*X + b
So if you want to solve for x, given y, just use algebra.
Y0 = 4.3
Y0 = 4.3000
X0 = (Y0 - b)/a
X0 = 4.3000
Since your data was so simple, the line is just the 45 degree line, with X == Y here.

Categories

Find more on Interpolation in Help Center and File Exchange

Products


Release

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!