2D PDEs in Cylindrical Coordinates, odes15s, indices compatibility issue

5 views (last 30 days)
Help will be highly appriciated.
In code line 60 - 68. If I choose mf=1, code is working perectly. But if I put mf=2 it shows some errors which are connected to pde_2.
% ODE integration
reltol=1.0e-04; abstol=1.0e-04;
options=odeset('RelTol',reltol,'AbsTol',abstol);
mf=1;%% If we put mf=2 Code is not working 11/01/2024 at line 62.
if(mf==1)
[t,y]=ode15s(@pde_1,tout,y0,options);
end
if(mf==2)
[t,y]=ode15s(@pde_2,tout,y0,options);
end
%
% Clear previous files
clear all
clc
%
% Global area
global nr nz dr dz drs dzs r z Dc Dt ca Tk cae Tke h k E R rk0 v rho Cp Tw dH ncall
%
% Model parameters
ca0=0.0;
cae=0.01;
Tk0=305.0;
Tke=305.0;
Tw=355.0;
r0=2.0;
zl=100.0;
v=1.0;
Dc=0.1;
Dt=0.1;
k=0.01;
h=0.01;
rho=1.0;
Cp=0.5;
rk0=1.5e+09;
dH=-10000.0;
E=15000.0;
R=1.987;
% Grid in axial direction
nz=20;
dz=zl/nz;
for i=1:nz
z(i)=i*dz;
end
%
% Grid in radial direction
nr=7;
dr=r0/(nr-1);
for j=1:nr
r(j)=(j-1)*dr;
end
drs=dr^2;
%
% Independent variable for ODE integration
tf=200.0;
tout=[0.0:50.0:tf]';
nout=5;
ncall=0;
%
% Initial condition
for i=1:nz
for j=1:nr
ca(i,j)=ca0;
Tk(i,j)=Tk0;
y0((i-1)*nr+j)=ca(i,j);
y0((i-1)*nr+j+nz*nr)=Tk(i,j);
end
end
%
% ODE integration
reltol=1.0e-04; abstol=1.0e-04;
options=odeset('RelTol',reltol,'AbsTol',abstol);
mf=2;%% If we put mf=2 Code is not working 20/9/2023
if(mf==1)
[t,y]=ode15s(@pde_1,tout,y0,options);
end
if(mf==2)
[t,y]=ode15s(@pde_2,tout,y0,options);
end
r4fdx = []
Unable to perform assignment because the indices on the left side are not compatible with the size of the right side.

Error in solution>dss004 (line 672)
ux( 1)=r4fdx*...

Error in solution>pde_2 (line 206)
car1d=dss004(0.0,r0,nr,ca1d)

Error in odearguments (line 92)
f0 = ode(t0,y0,args{:}); % ODE15I sets args{1} to yp0.

Error in ode15s (line 148)
odearguments(odeIsFuncHandle, odeTreatAsMFile, solver_name, ode, tspan, y0, options, varargin);
%
% 1D to 2D matrices
for it=1:nout
for i=1:nz
for j=1:nr
ca(it,i,j)=y(it,(i-1)*nr+j);
Tk(it,i,j)=y(it,(i-1)*nr+j+nz*nr);
end
end
end
%
% Display a heading and centerline output
fprintf('\n nr = %2d nz = %2d\n',nr,nz);
for it=1:nout
fprintf('\n t = %4.1f\n',t(it));
for i=1:nz
fprintf(' z = %5.1f ca(r=0,z,t) = %8.5f Tk(r=0,z,t) = %8.2f\n',z(i),ca(it,i,1),Tk(it,i,1));
end
end
fprintf('\n ncall = %5d\n',ncall);
%
% Parametric plots
%
% Axial profiles
subplot(2,2,1)
plot(z,ca(2,:,1)); axis([0 zl 0 0.01]);
title('ca(r=0,z,t=50)'); xlabel('z');
ylabel('ca(r=0,z,t=50)')
subplot(2,2,2)
plot(z,Tk(2,:,1)); axis([0 zl 305 450]);
title('Tk(r=0,z,t=50)'); xlabel('z');
ylabel('Tk(r=0,z,t=50)')
subplot(2,2,3)
plot(z,ca(3,:,1)); axis([0 zl 0 0.01]);
title('ca(r=0,z,t=100)'); xlabel('z');
ylabel('ca(r=0,z,t=100)')
subplot(2,2,4)
plot(z,Tk(3,:,1)); axis([0 zl 305 450]);
title('Tk(r=0,z,t=100)'); xlabel('z');
ylabel('Tk(r=0,z,t=100)')
figure(2);
subplot(2,2,1)
plot(z,ca(4,:,1)); axis([0 zl 0 0.01]);
title('ca(r=0,z,t=150)'); xlabel('z');
ylabel('ca(r=0,z,t=150)')
subplot(2,2,2)
plot(z,Tk(4,:,1)); axis([0 zl 305 450]);
title('Tk(r=0,z,t=150)'); xlabel('z');
ylabel('Tk(r=0,z,t=150)')
subplot(2,2,3)
plot(z,ca(5,:,1)); axis([0 zl 0 0.01]);
title('ca(r=0,z,t=200)'); xlabel('z');
ylabel('ca(r=0,z,t=200)')
subplot(2,2,4)
plot(z,Tk(5,:,1)); axis([0 zl 305 450]);
title('Tk(r=0,z,t=200)'); xlabel('z');
ylabel('Tk(r=0,z,t=200)')
% Radial profiles (at t = tf)
for i=1:nz,
for j=1:nr
ca_rad(i,j)=ca(5,i,j);
Tk_rad(i,j)=Tk(5,i,j);
end
end
figure(3);
subplot(2,2,1)
plot(r,ca_rad(1,:)); axis([0 r0 0.0 0.01]);
title('ca(r,z=5,t=200)'); xlabel('r');
ylabel('ca(r,z=5,t=200)')
subplot(2,2,2)
plot(r,ca_rad(7,:)); axis([0 r0 0.0 0.01]);
title('ca(r,z=35,t=200)'); xlabel('r');
ylabel('ca(r,z=35,t=200)')
subplot(2,2,3)
plot(r,ca_rad(14,:)); axis([0 r0 0.0 0.01]);
title('ca(r,z=70,t=200)'); xlabel('r');
ylabel('ca(r,z=70,t=200)')
subplot(2,2,4)
plot(r,ca_rad(20,:)); axis([0 r0 0.0 0.01]);
%
title('ca(r,z=100,t=200)'); xlabel('r');
ylabel('ca(r,z=100,t=200)')
figure(4);
subplot(2,2,1)
plot(r,Tk_rad(1,:)); axis([0 r0 305 450]);
title('Tk(r,z=5,t=200)'); xlabel('r');
ylabel('Tk(r,z=5,t=200)')
subplot(2,2,2)
plot(r,Tk_rad(7,:)); axis([0 r0 305 450]);
title('Tk(r,z=35,t=200)'); xlabel('r');
ylabel('Tk(r,z=35,t=200)')
subplot(2,2,3)
plot(r,Tk_rad(14,:)); axis([0 r0 305 450]);
title('Tk(r,z=70,t=200)'); xlabel('r');
ylabel('Tk(r,z=70,t=200)')
subplot(2,2,4)
plot(r,Tk_rad(20,:)); axis([0 r0 305 450]);
title('Tk(r,z=100,t=200)'); xlabel('r');
ylabel('Tk(r,z=100,t=200)')
% 3D plotting
figure()
surf(r,z,Tk_rad)
axis([0 r0 0 zl 0 500]);
xlabel('r - radial distance');
ylabel('z - axial distance');
zlabel('Tk - reactant temperature');
title([{'Surface & contour plot of reactant temperature,Tk(r,z),'},{ 'at time t=200.0'}]);
view(-130,62);
figure()
surf(r,z,ca_rad)
axis([0 r0 0 zl 0 0.01]);
xlabel('r - radial distance');
ylabel('z - axial distance');
zlabel('ca - reactant concentration');
title([{'Surface & contour plot of reactant concentration,ca(r,z),'},{ 'at time t=200.0'}]);
view(-130,62);
% rotate3d on
function yt=pde_2(t,y)
%
% Global area
global nr nz dr dz drs dzs r r0 z zl Dc Dt ca Tk cae Tke h k E R rk0 v rho Cp Tw dH ncall
%
% 1D to 2D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
ca(i,j)=y(ij);
Tk(i,j)=y(ij+nr*nz);
end
end
%
% Step through the grid points in r and z
for i=1:nz
ca1d=ca(i,:);
Tk1d=Tk(i,:);
%
% car, Tkr
car1d=dss004(0.0,r0,nr,ca1d)
car(i,:)=car1d;
car(i,1)= 0.0;
car(i,nr)=0.0;
Tkr1d=dss004(0.0,r0,nr,Tk1d)
Tkr(i,:)=Tkr1d;
Tkr(i,1)= 0.0;
Tkr(i,nr)=(h/k)*(Tw-Tk(i,nr))
%
% carr, Tkrr
car1d( 1)=0.0;
car1d(nr)=0.0;
nl=2;
nu=2;
carr1d=dss044(0.0,r0,nr,ca1d,car1d,nl,nu)
carr(i,:)=carr1d;
Tkr1d( 1)=0.0;
Tkr1d(nr)=(h/k)*(Tw-Tk1d(nr));
nl=2;
nu=2;
Tkrr1d=dss044(0.0,r0,nr,Tk1d,Tkr1d,nl,nu)
Tkrr(i,:)=Tkrr1d;
for j=1:nr
%
% (1/r)*car, (1/r)*Tkr
if(j~=1)
car(i,j)=(1.0/r(j))*car(i,j);
Tkr(i,j)=(1.0/r(j))*Tkr(i,j);
end
if(j==1)
carr(i,j)=2.0*carr(i,j);
end
if(j==1)
Tkrr(i,j)=2.0*Tkrr(i,j);
end
%
% caz, Tkz
if(i==1)
caz(i,j)=(ca(i,j)-cae)/dz;
Tkz(i,j)=(Tk(i,j)-Tke)/dz;
else
caz(i,j)=(ca(i,j)-ca(i-1,j))/dz;
Tkz(i,j)=(Tk(i,j)-Tk(i-1,j))/dz;
end
%
% PDEs
rk=rk0*exp(-E/(R*Tk(i,j)))*ca(i,j)^2;
cat(i,j)=Dc*(carr(i,j)+car(i,j))-v*caz(i,j)-rk;
Tkt(i,j)=Dt*(Tkrr(i,j)+Tkr(i,j))-v*Tkz(i,j)-dH/(rho*Cp)*rk;
end
end
%
% 2D to 1D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
yt(ij)=cat(i,j);
yt(ij+nr*nz)=Tkt(i,j);
end
end
%
% Transpose and count
yt=yt';
ncall=ncall+1;
end
function yt=pde_1(t,y)
%
% Global area
global nr nz dr dz drs dzs r z Dc Dt ca Tk cae Tke h k E R rk0 v rho Cp Tw dH ncall
%
% 1D to 2D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
ca(i,j)=y(ij);
Tk(i,j)=y(ij+nr*nz);
end
end
%
% Step through the grid points in r and z
for i=1:nz
for j=1:nr
%
% (1/r)*car, (1/r)*Tkr
if(j==1)
car(i,j)=2.0*(ca(i,j+1)-ca(i,j))/drs;
Tkr(i,j)=2.0*(Tk(i,j+1)-Tk(i,j))/drs;
elseif(j==nr)
car(i,j)=0.0;
Tkr(i,j)=(1.0/r(j))*(h/k)*(Tw-Tk(i,j));
else
car(i,j)=(1.0/r(j))*(ca(i,j+1)-ca(i,j-1))/(2.0*dr);
Tkr(i,j)=(1.0/r(j))*(Tk(i,j+1)-Tk(i,j-1))/(2.0*dr);
end
%
% carr, Tkrr
if(j==1)
carr(i,j)=2.0*(ca(i,j+1)-ca(i,j))/drs;
Tkrr(i,j)=2.0*(Tk(i,j+1)-Tk(i,j))/drs;
elseif(j==nr)
carr(i,j)=2.0*(ca(i,j-1)-ca(i,j))/drs;
Tkf=Tk(i,j-1)+2.0*dr*h/k*(Tw-Tk(i,j));
Tkrr(i,j)=(Tkf-2.0*Tk(i,j)+Tk(i,j-1))/drs;
else
carr(i,j)=(ca(i,j+1)-2.0*ca(i,j)+ca(i,j-1))/drs;
Tkrr(i,j)=(Tk(i,j+1)-2.0*Tk(i,j)+Tk(i,j-1))/drs;
end
%
% caz, Tkz
if(i==1)
caz(i,j)=(ca(i,j)-cae)/dz;
Tkz(i,j)=(Tk(i,j)-Tke)/dz;
else
caz(i,j)=(ca(i,j)-ca(i-1,j))/dz;
Tkz(i,j)=(Tk(i,j)-Tk(i-1,j))/dz;
end
%
% PDEs
rk=rk0*exp(-E/(R*Tk(i,j)))*ca(i,j)^2;
cat(i,j)=Dc*(carr(i,j)+car(i,j))-v*caz(i,j)-rk;
Tkt(i,j)=Dt*(Tkrr(i,j)+Tkr(i,j))-v*Tkz(i,j)-dH/(rho*Cp)*rk;
end
end
%
% 2D to 1D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
yt(ij)=cat(i,j);
yt(ij+nr*nz)=Tkt(i,j);
end
end
%
% Transpose and count
yt=yt';
ncall=ncall+1;
end
function [ux]=dss004(xl,xu,n,u)
% From Chapter 9, "Fitzhugh-Nagumo Equation", of the book:
% Graham W Griffiths and William E Schiesser (2011),
% Traveling Wave Analysis of Partial Differential Equations
% - Numerical and Analytical Methods with Matlab and Maple,
% Academic Press (ISBN: 9780123846525).
%
% Function dss004 computes the first derivative, u , of a
% x
% variable u over the spatial domain xl le x le xu from classical
% five-point, fourth-order finite difference approximations
%
% Argument list
%
% xl Lower boundary value of x (input)
%
% xu Upper boundary value of x (input)
%
% n Number of grid points in the x domain including the
% boundary points (input)
%
% u One-dimensional array containing the values of u at
% the n grid point points for which the derivative is
% to be computed (input)
%
% ux One-dimensional array containing the numerical
% values of the derivatives of u at the n grid points
% (output)
%
% The mathematical details of the following Taylor series (or
% polynomials) are given in routine dss002.
%
% Five-point formulas
%
% (1) Left end, point i = 1
%
% 2 3 4
% a(u2 = u1 + u1 ( dx) + u1 ( dx) + u1 ( dx) + u1 ( dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 ( dx) + u1 ( dx) + u1 ( dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% b(u3 = u1 + u1 (2dx) + u1 (2dx) + u1 (2dx) + u1 (2dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (2dx) + u1 (2dx) + u1 (2dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% c(u4 = u1 + u1 (3dx) + u1 (3dx) + u1 (3dx) + u1 (3dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (3dx) + u1 (3dx) + u1 (3dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% d(u5 = u1 + u1 (4dx) + u1 (4dx) + u1 (4dx) + u1 (4dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (4dx) + u1 (4dx) + u1 (4dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% Constants a, b, c and d are selected so that the coefficients
% of the u1 terms sum to one and the coefficients of the u1 ,
% x 2x
% u1 and u1 terms sum to zero
% 3x 4x
%
% a + 2b + 3c + 4d = 1
%
% a + 4b + 9c + 16d = 0
%
% a + 8b + 27c + 64d = 0
%
% a + 16b + 81c + 256d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% u1 = (1/12dx)(-25u1 + 48u2 - 36u3 + 16u4 - 3u5) + O(dx ) (1)
% x
%
% (2) Interior point, i = 2
%
% 2 3 4
% a(u1 = u2 + u2 (-dx) + u2 (-dx) + u2 (-dx) + u2 (-dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (-dx) + u2 (-dx) + u2 (-dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% b(u3 = u2 + u2 ( dx) + u2 ( dx) + u2 ( dx) + u2 ( dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 ( dx) + u2 ( dx) + u2 ( dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% c(u4 = u2 + u2 (2dx) + u2 (2dx) + u2 (2dx) + u2 (2dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (2dx) + u2 (2dx) + u2 (2dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% d(u5 = u2 + u2 (3dx) + u2 (3dx) + u2 (3dx) + u2 (3dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (3dx) + u2 (3dx) + u2 (3dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% -a + b + 2c + 3d = 1
%
% a + b + 4c + 9d = 0
%
% -a + b + 8c + 27d = 0
%
% a + b + 16c + 81d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% u2 = (1/12dx)(-3u1 - 10u2 + 18u3 - 6u4 + u5) + O(dx ) (2)
% x
%
% (3) Interior point i, i ne 2, n-1
%
% 2 3
% a(ui-2 = ui + ui (-2dx) + ui (-2dx) + ui (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui (-2dx) + ui (-2dx) + ui (-2dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(ui-1 = ui + ui ( -dx) + ui ( -dx) + ui ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( -dx) + ui ( -dx) + ui ( -dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(ui+1 = ui + ui ( dx) + ui ( dx) + ui ( dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( dx) + ui ( dx) + ui ( dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(ui+2 = ui + ui ( 2dx) + ui ( 2dx) + ui ( 2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( 2dx) + ui ( 2dx) + ui ( 2dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% -2a - b + c + 2d = 1
%
% 4a + b + c + 4d = 0
%
% -8a - b + c + 8d = 0
%
% 16a + b + c + 16d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% ui = (1/12dx)(ui-2 - 8ui-1 + 0ui + 8ui+1 - ui+2) + O(dx ) (3)
% x
%
% (4) Interior point, i = n-1
%
% 2 3
% a(un-4 = un-1 + un-1 (-3dx) + un-1 (-3dx) + un-1 (-3dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 (-3dx) + un-1 (-3dx) + un-1 (-3dx) + ...
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(un-3 = un-1 + un-1 (-2dx) + un-1 (-2dx) + un-1 (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 (-2dx) + un-1 (-2dx) + un-1 (-2dx) + ...
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(un-2 = un-1 + un-1 ( -dx) + un-1 (- -x) + un-1 ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 ( -dx) + un-1 ( -dx) + un-1 ( -dx) + ...
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(un = un-1 + un-1 ( dx) + un-1 ( dx) + un-1 ( dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 ( dx) + un-1 ( dx) + un-1 ( dx) + ...
% 4x 4f 5x 5f 6x 6f
%
% -3a - 2b - c + d = 1
%
% 9a + 4b + c + d = 0
%
% -27a - 8b - c + d = 0
%
% 81a + 16b + c + d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% un-1 = (1/12dx)(-un-4 + 6un-3 - 18un-2 + 10un-1 + 3un) + O(dx )
% x
% (4)
%
% (5) Right end, point i = n
%
% 2 3
% a(un-4 = un + un (-4dx) + un (-4dx) + un (-4dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-4dx) + un (-4dx) + un (-4dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(un-3 = un + un (-3dx) + un (-3dx) + un (-3dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-3dx) + un (-3dx) + un (-3dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(un-2 = un + un (-2dx) + un (-2dx) + un (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-2dx) + un (-2dx) + un (-2dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(un-1 = un + un ( -dx) + un ( -dx) + un ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un ( -dx) + un ( -dx) + un ( -dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% -4a - 3b - 2c - d = 1
%
% 16a + 9b + 4c + d = 0
%
% -64a - 27b - 8c - d = 0
%
% 256a + 81b + 16c + d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% un = (1/12dx)(3un-4 - 16un-3 + 36un-2 - 48un-1 + 25un) + O(dx )
% x
% (5)
%
% The weighting coefficients for equations (1) to (5) can be
% summarized as
%
% -25 48 -36 16 -3
%
% -3 -10 18 -6 1
%
% 1/12 1 -8 0 8 -1
%
% -1 6 -18 10 3
%
% 3 -16 36 -48 25
%
% which are the coefficients reported by Bickley for n = 4, m =
% 1, p = 0, 1, 2, 3, 4 (Bickley, W. G., Formulae for Numerical
% Differentiation, Math. Gaz., vol. 25, 1941. Note - the Bickley
% coefficients have been divided by a common factor of two).
%
% Equations (1) to (5) can now be programmed to generate the
% derivative u (x) of function u(x).
% x
%
% Compute the spatial increment
dx=(xu-xl)/(n-1);
r4fdx=1./(12.*dx)
nm2=n-2;
%
% Equation (1) (note - the rhs of equations (1), (2), (3), (4)
% and (5) have been formatted so that the numerical weighting
% coefficients can be more easily associated with the Bickley
% matrix above)
ux( 1)=r4fdx*...
( -25.*u( 1) +48.*u( 2) -36.*u( 3) +16.*u( 4) -3.*u( 5));
%
% Equation (2)
ux( 2)=r4fdx*...
( -3.*u( 1) -10.*u( 2) +18.*u( 3) -6.*u( 4) +1.*u( 5));
%
% Equation (3)
for i=3:nm2
ux( i)=r4fdx*...
( +1.*u(i-2) -8.*u(i-1) +0.*u( i) +8.*u(i+1) -1.*u(i+2));
end
%
% Equation (4)
ux(n-1)=r4fdx*...
( -1.*u(n-4) +6.*u(n-3) -18.*u(n-2) +10.*u(n-1) +3.*u( n));
%
% Equation (5)
ux( n)=r4fdx*...
( 3.*u(n-4) -16.*u(n-3) +36.*u(n-2) -48.*u(n-1) +25.*u( n));
end

Accepted Answer

Torsten
Torsten on 6 Feb 2024
In the script part:
global nr nz dr dz drs dzs r z Dc Dt ca Tk cae Tke h k E R rk0 v rho Cp Tw dH ncall
In pde_2:
global nr nz dr dz drs dzs r r0 z zl Dc Dt ca Tk cae Tke h k E R rk0 v rho Cp Tw dH ncall
You can see that r0 is not set. This makes dx = empty in dss004.

More Answers (0)

Categories

Find more on Linear Programming and Mixed-Integer Linear Programming in Help Center and File Exchange

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!