2D PDEs in Cylindrical Coordinates, odes15s, indices compatibility issue
5 views (last 30 days)
Show older comments
Help will be highly appriciated.
In code line 60 - 68. If I choose mf=1, code is working perectly. But if I put mf=2 it shows some errors which are connected to pde_2.
% ODE integration
reltol=1.0e-04; abstol=1.0e-04;
options=odeset('RelTol',reltol,'AbsTol',abstol);
mf=1;%% If we put mf=2 Code is not working 11/01/2024 at line 62.
if(mf==1)
[t,y]=ode15s(@pde_1,tout,y0,options);
end
if(mf==2)
[t,y]=ode15s(@pde_2,tout,y0,options);
end
%
% Clear previous files
clear all
clc
%
% Global area
global nr nz dr dz drs dzs r z Dc Dt ca Tk cae Tke h k E R rk0 v rho Cp Tw dH ncall
%
% Model parameters
ca0=0.0;
cae=0.01;
Tk0=305.0;
Tke=305.0;
Tw=355.0;
r0=2.0;
zl=100.0;
v=1.0;
Dc=0.1;
Dt=0.1;
k=0.01;
h=0.01;
rho=1.0;
Cp=0.5;
rk0=1.5e+09;
dH=-10000.0;
E=15000.0;
R=1.987;
% Grid in axial direction
nz=20;
dz=zl/nz;
for i=1:nz
z(i)=i*dz;
end
%
% Grid in radial direction
nr=7;
dr=r0/(nr-1);
for j=1:nr
r(j)=(j-1)*dr;
end
drs=dr^2;
%
% Independent variable for ODE integration
tf=200.0;
tout=[0.0:50.0:tf]';
nout=5;
ncall=0;
%
% Initial condition
for i=1:nz
for j=1:nr
ca(i,j)=ca0;
Tk(i,j)=Tk0;
y0((i-1)*nr+j)=ca(i,j);
y0((i-1)*nr+j+nz*nr)=Tk(i,j);
end
end
%
% ODE integration
reltol=1.0e-04; abstol=1.0e-04;
options=odeset('RelTol',reltol,'AbsTol',abstol);
mf=2;%% If we put mf=2 Code is not working 20/9/2023
if(mf==1)
[t,y]=ode15s(@pde_1,tout,y0,options);
end
if(mf==2)
[t,y]=ode15s(@pde_2,tout,y0,options);
end
%
% 1D to 2D matrices
for it=1:nout
for i=1:nz
for j=1:nr
ca(it,i,j)=y(it,(i-1)*nr+j);
Tk(it,i,j)=y(it,(i-1)*nr+j+nz*nr);
end
end
end
%
% Display a heading and centerline output
fprintf('\n nr = %2d nz = %2d\n',nr,nz);
for it=1:nout
fprintf('\n t = %4.1f\n',t(it));
for i=1:nz
fprintf(' z = %5.1f ca(r=0,z,t) = %8.5f Tk(r=0,z,t) = %8.2f\n',z(i),ca(it,i,1),Tk(it,i,1));
end
end
fprintf('\n ncall = %5d\n',ncall);
%
% Parametric plots
%
% Axial profiles
subplot(2,2,1)
plot(z,ca(2,:,1)); axis([0 zl 0 0.01]);
title('ca(r=0,z,t=50)'); xlabel('z');
ylabel('ca(r=0,z,t=50)')
subplot(2,2,2)
plot(z,Tk(2,:,1)); axis([0 zl 305 450]);
title('Tk(r=0,z,t=50)'); xlabel('z');
ylabel('Tk(r=0,z,t=50)')
subplot(2,2,3)
plot(z,ca(3,:,1)); axis([0 zl 0 0.01]);
title('ca(r=0,z,t=100)'); xlabel('z');
ylabel('ca(r=0,z,t=100)')
subplot(2,2,4)
plot(z,Tk(3,:,1)); axis([0 zl 305 450]);
title('Tk(r=0,z,t=100)'); xlabel('z');
ylabel('Tk(r=0,z,t=100)')
figure(2);
subplot(2,2,1)
plot(z,ca(4,:,1)); axis([0 zl 0 0.01]);
title('ca(r=0,z,t=150)'); xlabel('z');
ylabel('ca(r=0,z,t=150)')
subplot(2,2,2)
plot(z,Tk(4,:,1)); axis([0 zl 305 450]);
title('Tk(r=0,z,t=150)'); xlabel('z');
ylabel('Tk(r=0,z,t=150)')
subplot(2,2,3)
plot(z,ca(5,:,1)); axis([0 zl 0 0.01]);
title('ca(r=0,z,t=200)'); xlabel('z');
ylabel('ca(r=0,z,t=200)')
subplot(2,2,4)
plot(z,Tk(5,:,1)); axis([0 zl 305 450]);
title('Tk(r=0,z,t=200)'); xlabel('z');
ylabel('Tk(r=0,z,t=200)')
% Radial profiles (at t = tf)
for i=1:nz,
for j=1:nr
ca_rad(i,j)=ca(5,i,j);
Tk_rad(i,j)=Tk(5,i,j);
end
end
figure(3);
subplot(2,2,1)
plot(r,ca_rad(1,:)); axis([0 r0 0.0 0.01]);
title('ca(r,z=5,t=200)'); xlabel('r');
ylabel('ca(r,z=5,t=200)')
subplot(2,2,2)
plot(r,ca_rad(7,:)); axis([0 r0 0.0 0.01]);
title('ca(r,z=35,t=200)'); xlabel('r');
ylabel('ca(r,z=35,t=200)')
subplot(2,2,3)
plot(r,ca_rad(14,:)); axis([0 r0 0.0 0.01]);
title('ca(r,z=70,t=200)'); xlabel('r');
ylabel('ca(r,z=70,t=200)')
subplot(2,2,4)
plot(r,ca_rad(20,:)); axis([0 r0 0.0 0.01]);
%
title('ca(r,z=100,t=200)'); xlabel('r');
ylabel('ca(r,z=100,t=200)')
figure(4);
subplot(2,2,1)
plot(r,Tk_rad(1,:)); axis([0 r0 305 450]);
title('Tk(r,z=5,t=200)'); xlabel('r');
ylabel('Tk(r,z=5,t=200)')
subplot(2,2,2)
plot(r,Tk_rad(7,:)); axis([0 r0 305 450]);
title('Tk(r,z=35,t=200)'); xlabel('r');
ylabel('Tk(r,z=35,t=200)')
subplot(2,2,3)
plot(r,Tk_rad(14,:)); axis([0 r0 305 450]);
title('Tk(r,z=70,t=200)'); xlabel('r');
ylabel('Tk(r,z=70,t=200)')
subplot(2,2,4)
plot(r,Tk_rad(20,:)); axis([0 r0 305 450]);
title('Tk(r,z=100,t=200)'); xlabel('r');
ylabel('Tk(r,z=100,t=200)')
% 3D plotting
figure()
surf(r,z,Tk_rad)
axis([0 r0 0 zl 0 500]);
xlabel('r - radial distance');
ylabel('z - axial distance');
zlabel('Tk - reactant temperature');
title([{'Surface & contour plot of reactant temperature,Tk(r,z),'},{ 'at time t=200.0'}]);
view(-130,62);
figure()
surf(r,z,ca_rad)
axis([0 r0 0 zl 0 0.01]);
xlabel('r - radial distance');
ylabel('z - axial distance');
zlabel('ca - reactant concentration');
title([{'Surface & contour plot of reactant concentration,ca(r,z),'},{ 'at time t=200.0'}]);
view(-130,62);
% rotate3d on
function yt=pde_2(t,y)
%
% Global area
global nr nz dr dz drs dzs r r0 z zl Dc Dt ca Tk cae Tke h k E R rk0 v rho Cp Tw dH ncall
%
% 1D to 2D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
ca(i,j)=y(ij);
Tk(i,j)=y(ij+nr*nz);
end
end
%
% Step through the grid points in r and z
for i=1:nz
ca1d=ca(i,:);
Tk1d=Tk(i,:);
%
% car, Tkr
car1d=dss004(0.0,r0,nr,ca1d)
car(i,:)=car1d;
car(i,1)= 0.0;
car(i,nr)=0.0;
Tkr1d=dss004(0.0,r0,nr,Tk1d)
Tkr(i,:)=Tkr1d;
Tkr(i,1)= 0.0;
Tkr(i,nr)=(h/k)*(Tw-Tk(i,nr))
%
% carr, Tkrr
car1d( 1)=0.0;
car1d(nr)=0.0;
nl=2;
nu=2;
carr1d=dss044(0.0,r0,nr,ca1d,car1d,nl,nu)
carr(i,:)=carr1d;
Tkr1d( 1)=0.0;
Tkr1d(nr)=(h/k)*(Tw-Tk1d(nr));
nl=2;
nu=2;
Tkrr1d=dss044(0.0,r0,nr,Tk1d,Tkr1d,nl,nu)
Tkrr(i,:)=Tkrr1d;
for j=1:nr
%
% (1/r)*car, (1/r)*Tkr
if(j~=1)
car(i,j)=(1.0/r(j))*car(i,j);
Tkr(i,j)=(1.0/r(j))*Tkr(i,j);
end
if(j==1)
carr(i,j)=2.0*carr(i,j);
end
if(j==1)
Tkrr(i,j)=2.0*Tkrr(i,j);
end
%
% caz, Tkz
if(i==1)
caz(i,j)=(ca(i,j)-cae)/dz;
Tkz(i,j)=(Tk(i,j)-Tke)/dz;
else
caz(i,j)=(ca(i,j)-ca(i-1,j))/dz;
Tkz(i,j)=(Tk(i,j)-Tk(i-1,j))/dz;
end
%
% PDEs
rk=rk0*exp(-E/(R*Tk(i,j)))*ca(i,j)^2;
cat(i,j)=Dc*(carr(i,j)+car(i,j))-v*caz(i,j)-rk;
Tkt(i,j)=Dt*(Tkrr(i,j)+Tkr(i,j))-v*Tkz(i,j)-dH/(rho*Cp)*rk;
end
end
%
% 2D to 1D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
yt(ij)=cat(i,j);
yt(ij+nr*nz)=Tkt(i,j);
end
end
%
% Transpose and count
yt=yt';
ncall=ncall+1;
end
function yt=pde_1(t,y)
%
% Global area
global nr nz dr dz drs dzs r z Dc Dt ca Tk cae Tke h k E R rk0 v rho Cp Tw dH ncall
%
% 1D to 2D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
ca(i,j)=y(ij);
Tk(i,j)=y(ij+nr*nz);
end
end
%
% Step through the grid points in r and z
for i=1:nz
for j=1:nr
%
% (1/r)*car, (1/r)*Tkr
if(j==1)
car(i,j)=2.0*(ca(i,j+1)-ca(i,j))/drs;
Tkr(i,j)=2.0*(Tk(i,j+1)-Tk(i,j))/drs;
elseif(j==nr)
car(i,j)=0.0;
Tkr(i,j)=(1.0/r(j))*(h/k)*(Tw-Tk(i,j));
else
car(i,j)=(1.0/r(j))*(ca(i,j+1)-ca(i,j-1))/(2.0*dr);
Tkr(i,j)=(1.0/r(j))*(Tk(i,j+1)-Tk(i,j-1))/(2.0*dr);
end
%
% carr, Tkrr
if(j==1)
carr(i,j)=2.0*(ca(i,j+1)-ca(i,j))/drs;
Tkrr(i,j)=2.0*(Tk(i,j+1)-Tk(i,j))/drs;
elseif(j==nr)
carr(i,j)=2.0*(ca(i,j-1)-ca(i,j))/drs;
Tkf=Tk(i,j-1)+2.0*dr*h/k*(Tw-Tk(i,j));
Tkrr(i,j)=(Tkf-2.0*Tk(i,j)+Tk(i,j-1))/drs;
else
carr(i,j)=(ca(i,j+1)-2.0*ca(i,j)+ca(i,j-1))/drs;
Tkrr(i,j)=(Tk(i,j+1)-2.0*Tk(i,j)+Tk(i,j-1))/drs;
end
%
% caz, Tkz
if(i==1)
caz(i,j)=(ca(i,j)-cae)/dz;
Tkz(i,j)=(Tk(i,j)-Tke)/dz;
else
caz(i,j)=(ca(i,j)-ca(i-1,j))/dz;
Tkz(i,j)=(Tk(i,j)-Tk(i-1,j))/dz;
end
%
% PDEs
rk=rk0*exp(-E/(R*Tk(i,j)))*ca(i,j)^2;
cat(i,j)=Dc*(carr(i,j)+car(i,j))-v*caz(i,j)-rk;
Tkt(i,j)=Dt*(Tkrr(i,j)+Tkr(i,j))-v*Tkz(i,j)-dH/(rho*Cp)*rk;
end
end
%
% 2D to 1D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
yt(ij)=cat(i,j);
yt(ij+nr*nz)=Tkt(i,j);
end
end
%
% Transpose and count
yt=yt';
ncall=ncall+1;
end
function [ux]=dss004(xl,xu,n,u)
% From Chapter 9, "Fitzhugh-Nagumo Equation", of the book:
% Graham W Griffiths and William E Schiesser (2011),
% Traveling Wave Analysis of Partial Differential Equations
% - Numerical and Analytical Methods with Matlab and Maple,
% Academic Press (ISBN: 9780123846525).
%
% Function dss004 computes the first derivative, u , of a
% x
% variable u over the spatial domain xl le x le xu from classical
% five-point, fourth-order finite difference approximations
%
% Argument list
%
% xl Lower boundary value of x (input)
%
% xu Upper boundary value of x (input)
%
% n Number of grid points in the x domain including the
% boundary points (input)
%
% u One-dimensional array containing the values of u at
% the n grid point points for which the derivative is
% to be computed (input)
%
% ux One-dimensional array containing the numerical
% values of the derivatives of u at the n grid points
% (output)
%
% The mathematical details of the following Taylor series (or
% polynomials) are given in routine dss002.
%
% Five-point formulas
%
% (1) Left end, point i = 1
%
% 2 3 4
% a(u2 = u1 + u1 ( dx) + u1 ( dx) + u1 ( dx) + u1 ( dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 ( dx) + u1 ( dx) + u1 ( dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% b(u3 = u1 + u1 (2dx) + u1 (2dx) + u1 (2dx) + u1 (2dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (2dx) + u1 (2dx) + u1 (2dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% c(u4 = u1 + u1 (3dx) + u1 (3dx) + u1 (3dx) + u1 (3dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (3dx) + u1 (3dx) + u1 (3dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% d(u5 = u1 + u1 (4dx) + u1 (4dx) + u1 (4dx) + u1 (4dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (4dx) + u1 (4dx) + u1 (4dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% Constants a, b, c and d are selected so that the coefficients
% of the u1 terms sum to one and the coefficients of the u1 ,
% x 2x
% u1 and u1 terms sum to zero
% 3x 4x
%
% a + 2b + 3c + 4d = 1
%
% a + 4b + 9c + 16d = 0
%
% a + 8b + 27c + 64d = 0
%
% a + 16b + 81c + 256d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% u1 = (1/12dx)(-25u1 + 48u2 - 36u3 + 16u4 - 3u5) + O(dx ) (1)
% x
%
% (2) Interior point, i = 2
%
% 2 3 4
% a(u1 = u2 + u2 (-dx) + u2 (-dx) + u2 (-dx) + u2 (-dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (-dx) + u2 (-dx) + u2 (-dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% b(u3 = u2 + u2 ( dx) + u2 ( dx) + u2 ( dx) + u2 ( dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 ( dx) + u2 ( dx) + u2 ( dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% c(u4 = u2 + u2 (2dx) + u2 (2dx) + u2 (2dx) + u2 (2dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (2dx) + u2 (2dx) + u2 (2dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% d(u5 = u2 + u2 (3dx) + u2 (3dx) + u2 (3dx) + u2 (3dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (3dx) + u2 (3dx) + u2 (3dx) + ...)
% 5x 5f 6x 6f 7x 7f
%
% -a + b + 2c + 3d = 1
%
% a + b + 4c + 9d = 0
%
% -a + b + 8c + 27d = 0
%
% a + b + 16c + 81d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% u2 = (1/12dx)(-3u1 - 10u2 + 18u3 - 6u4 + u5) + O(dx ) (2)
% x
%
% (3) Interior point i, i ne 2, n-1
%
% 2 3
% a(ui-2 = ui + ui (-2dx) + ui (-2dx) + ui (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui (-2dx) + ui (-2dx) + ui (-2dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(ui-1 = ui + ui ( -dx) + ui ( -dx) + ui ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( -dx) + ui ( -dx) + ui ( -dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(ui+1 = ui + ui ( dx) + ui ( dx) + ui ( dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( dx) + ui ( dx) + ui ( dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(ui+2 = ui + ui ( 2dx) + ui ( 2dx) + ui ( 2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( 2dx) + ui ( 2dx) + ui ( 2dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% -2a - b + c + 2d = 1
%
% 4a + b + c + 4d = 0
%
% -8a - b + c + 8d = 0
%
% 16a + b + c + 16d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% ui = (1/12dx)(ui-2 - 8ui-1 + 0ui + 8ui+1 - ui+2) + O(dx ) (3)
% x
%
% (4) Interior point, i = n-1
%
% 2 3
% a(un-4 = un-1 + un-1 (-3dx) + un-1 (-3dx) + un-1 (-3dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 (-3dx) + un-1 (-3dx) + un-1 (-3dx) + ...
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(un-3 = un-1 + un-1 (-2dx) + un-1 (-2dx) + un-1 (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 (-2dx) + un-1 (-2dx) + un-1 (-2dx) + ...
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(un-2 = un-1 + un-1 ( -dx) + un-1 (- -x) + un-1 ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 ( -dx) + un-1 ( -dx) + un-1 ( -dx) + ...
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(un = un-1 + un-1 ( dx) + un-1 ( dx) + un-1 ( dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 ( dx) + un-1 ( dx) + un-1 ( dx) + ...
% 4x 4f 5x 5f 6x 6f
%
% -3a - 2b - c + d = 1
%
% 9a + 4b + c + d = 0
%
% -27a - 8b - c + d = 0
%
% 81a + 16b + c + d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% un-1 = (1/12dx)(-un-4 + 6un-3 - 18un-2 + 10un-1 + 3un) + O(dx )
% x
% (4)
%
% (5) Right end, point i = n
%
% 2 3
% a(un-4 = un + un (-4dx) + un (-4dx) + un (-4dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-4dx) + un (-4dx) + un (-4dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(un-3 = un + un (-3dx) + un (-3dx) + un (-3dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-3dx) + un (-3dx) + un (-3dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(un-2 = un + un (-2dx) + un (-2dx) + un (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-2dx) + un (-2dx) + un (-2dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(un-1 = un + un ( -dx) + un ( -dx) + un ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un ( -dx) + un ( -dx) + un ( -dx) + ...)
% 4x 4f 5x 5f 6x 6f
%
% -4a - 3b - 2c - d = 1
%
% 16a + 9b + 4c + d = 0
%
% -64a - 27b - 8c - d = 0
%
% 256a + 81b + 16c + d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% un = (1/12dx)(3un-4 - 16un-3 + 36un-2 - 48un-1 + 25un) + O(dx )
% x
% (5)
%
% The weighting coefficients for equations (1) to (5) can be
% summarized as
%
% -25 48 -36 16 -3
%
% -3 -10 18 -6 1
%
% 1/12 1 -8 0 8 -1
%
% -1 6 -18 10 3
%
% 3 -16 36 -48 25
%
% which are the coefficients reported by Bickley for n = 4, m =
% 1, p = 0, 1, 2, 3, 4 (Bickley, W. G., Formulae for Numerical
% Differentiation, Math. Gaz., vol. 25, 1941. Note - the Bickley
% coefficients have been divided by a common factor of two).
%
% Equations (1) to (5) can now be programmed to generate the
% derivative u (x) of function u(x).
% x
%
% Compute the spatial increment
dx=(xu-xl)/(n-1);
r4fdx=1./(12.*dx)
nm2=n-2;
%
% Equation (1) (note - the rhs of equations (1), (2), (3), (4)
% and (5) have been formatted so that the numerical weighting
% coefficients can be more easily associated with the Bickley
% matrix above)
ux( 1)=r4fdx*...
( -25.*u( 1) +48.*u( 2) -36.*u( 3) +16.*u( 4) -3.*u( 5));
%
% Equation (2)
ux( 2)=r4fdx*...
( -3.*u( 1) -10.*u( 2) +18.*u( 3) -6.*u( 4) +1.*u( 5));
%
% Equation (3)
for i=3:nm2
ux( i)=r4fdx*...
( +1.*u(i-2) -8.*u(i-1) +0.*u( i) +8.*u(i+1) -1.*u(i+2));
end
%
% Equation (4)
ux(n-1)=r4fdx*...
( -1.*u(n-4) +6.*u(n-3) -18.*u(n-2) +10.*u(n-1) +3.*u( n));
%
% Equation (5)
ux( n)=r4fdx*...
( 3.*u(n-4) -16.*u(n-3) +36.*u(n-2) -48.*u(n-1) +25.*u( n));
end
0 Comments
Accepted Answer
Torsten
on 6 Feb 2024
In the script part:
global nr nz dr dz drs dzs r z Dc Dt ca Tk cae Tke h k E R rk0 v rho Cp Tw dH ncall
In pde_2:
global nr nz dr dz drs dzs r r0 z zl Dc Dt ca Tk cae Tke h k E R rk0 v rho Cp Tw dH ncall
You can see that r0 is not set. This makes dx = empty in dss004.
More Answers (0)
See Also
Categories
Find more on Linear Programming and Mixed-Integer Linear Programming in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!