I am using ODE45 to solve a system of 4 ODEs. my DVsol ( that contains all results for my Dpendent Variables) are showing zero.

1 view (last 30 days)
This is the FUNC_MAIN ( the Function that calls FUNC_DEF) :
clc
clear all
close all
% Start timing
tic
%% Inputs
%*****************************
t_span=[0 1e7]; %time span
q_d1_0=0; % Initial conditions for q_d1,q_d2, q_r and c_small
q_d2_0=0;
q_r_0=0;
c_small_0=0;
IC=[q_d1_0 q_d2_0 q_r_0 c_small_0]; % IC is the set of all the Initial conditions
%% Function call
%*****************************
% %auto time step
% [IVsol, DVsol] = ode45(@(IV, DV) FUNC_DEF(IV, DV), t_span, IC);
% [IVsol, DVsol] = ode45('FUNC_DEF', t_span, IC);
% adjusted time step
%options = odeset('MaxStep', 1); % Adjust MaxStep as needed
[IVsol, DVsol] = ode15s(@(IV, DV) FUNC_DEF(IV, DV), t_span, IC);%, options);
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
1.0e-19 * 0.9513 0.1362 0.0024 -0.0339
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
dDVdIV = 4×1
0 0 0 0
plot(IVsol,DVsol)
progress = (IVsol(end) - t_span(1)) / (t_span(2) - t_span(1)) * 100; % Display progress
fprintf('Integration progress: %.2f%%\n', progress);
Integration progress: 100.00%
%% Save results in a MAT file
%*****************************
results = struct('IVsol', IVsol, 'DVsol', DVsol);
%save('Diffusion_specific_results_120C.mat', 'results');
% save("Diffusion_specific_results.mat")
% disp('Results saved');
%% Stop timing and display elapsed time
%*****************************
elapsed_time = toc;
fprintf('Total time taken: %.4f seconds\n', elapsed_time);
Total time taken: 0.5132 seconds
This is the FUNC_DEF ( the Function defination program) :
function [dDVdIV] = FUNC_DEF(IV, DV)
% i : Independent Var, D : Dependent Var; dDVdt_DEF: funnction defination
% IV , I , IVsol : Independent Variables
% DV , D , DVsol : Independent Variables
% Defining constants
%*****************************
theta = 120+273; % absloute temperature in Kelvin
k01=2.776e7; % in /sec
k02=2.136e10; % in /sec
E_k=1.0513e5; % in J/mol
% c_0 = 1; % dimensionless local oxygen concentration: ASSUMED
R = 8.314; % universal gas constant in J/mol
rho_0=1000; % Density of NBR in the reference configuration in kg/m^3
d_c_0=1.1e-10; % in m^2/sec
gamma_c=72.196;
nu_d1 = 5.3955e6; % in /sec
E_d1 = 8.9732e4; % in J/mol
nu_d2 = 5.401e7; % in /sec
E_d2 = 1.0361e5;
cons_d1_wo_c = nu_d1 * exp(-(E_d1 / (R * theta))); % cons_d1_wo_c=cons_d1 without c
cons_d2_wo_c = nu_d2 * exp(-(E_d2 / (R * theta))); % cons_d2_wo_c=cons_d2 without c
nu_r = 8.745e4; % in /sec
E_r = 9.5852e4; % in J/mol
cons_r_wo_c = nu_r * exp(-(E_r / (R * theta))); % cons_r_wo_c=cons_r without c
%*****************************
% Defining Dependent variables
%*****************************
q_d1=DV(1);
q_d2=DV(2);
q_r=DV(3);
c_small=DV(4);
%*****************************
% Calculate the constants including c
%*****************************
cons_d1_with_c = c_small .* cons_d1_wo_c ;
cons_d2_with_c = c_small.* cons_d2_wo_c ;
cons_r_with_c = c_small.* cons_r_wo_c ;
%*****************************
% Calculate the derivatives of DVs and Extra variables defination
%*****************************
der_q_d1_def=cons_d1_with_c .* (1 - q_d1); % DE of q_d1
der_q_d2_def=cons_d2_with_c .* (1 - q_d2); % DE of q_d2
q_d=(q_d1+q_d2)/2; % expr of q_d
der_q_r_def=cons_r_with_c .* (1 - q_r); % DE of q_r
d_c = d_c_0*exp(-(gamma_c*q_r)); % expr of d_c
k_small=(k01*(1-((q_d1+q_d2)/2))+k02*(1-q_r))*exp(-(E_k / (R * theta))); % expr of k_small
der_c_small_def=((-k_small.*c_small)/rho_0); % expression for DE of c_dot_small
%*****************************
% Defining Function defination
%*****************************
dDVdIV=[der_q_d1_def;der_q_d2_def;der_q_r_def;der_c_small_def]
% dDVdIV=@(DV,IV)[der_q_d1_def;der_q_d2_def;der_q_r_def;der_c_small_def];
%*****************************
end
  2 Comments
Torsten
Torsten on 25 Aug 2023
Edited: Torsten on 25 Aug 2023
As you can see, the derivatives of your solution variables all turn out to be 0. So starting with 0 and adding 0 gives 0.

Sign in to comment.

Accepted Answer

Sam Chak
Sam Chak on 25 Aug 2023
Edited: Sam Chak on 25 Aug 2023
Update: In short, the zeros are the equilibrium points of the system. Here are Trajectories obtained from the non-zero initial values.
%% Inputs
%*****************************
t_span = [0 1e7]; % time span
q_d1_0 = 50; % Initial conditions for q_d1,q_d2, q_r and c_small
q_d2_0 = -20;
q_r_0 = 10;
c_small_0 = 4;
IC = [q_d1_0 q_d2_0 q_r_0 c_small_0]; % IC is the set of all the Initial conditions
%% Function call
%*****************************
% %auto time step
% [IVsol, DVsol] = ode45(@(IV, DV) FUNC_DEF(IV, DV), t_span, IC);
% [IVsol, DVsol] = ode45('FUNC_DEF', t_span, IC);
% adjusted time step
%options = odeset('MaxStep', 1); % Adjust MaxStep as needed
[IVsol, DVsol] = ode15s(@(IV, DV) FUNC_DEF(IV, DV), t_span, IC);%, options);
plot(IVsol, DVsol), grid on, legend('show', 'location', 'east')
xlabel('IV'), ylabel('DV')
function [dDVdIV] = FUNC_DEF(IV, DV)
% i : Independent Var, D : Dependent Var; dDVdt_DEF: funnction defination
% IV , I , IVsol : Independent Variables
% DV , D , DVsol : Independent Variables
% Defining constants
%*****************************
theta = 120+273; % absloute temperature in Kelvin
k01 = 2.776e7; % in /sec
k02 = 2.136e10; % in /sec
E_k = 1.0513e5; % in J/mol
% c_0 = 1; % dimensionless local oxygen concentration: ASSUMED
R = 8.314; % universal gas constant in J/mol
rho_0 = 1000; % Density of NBR in the reference configuration in kg/m^3
d_c_0 = 1.1e-10; % in m^2/sec
gamma_c = 72.196;
nu_d1 = 5.3955e6; % in /sec
E_d1 = 8.9732e4; % in J/mol
nu_d2 = 5.401e7; % in /sec
E_d2 = 1.0361e5;
nu_r = 8.745e4; % in /sec
E_r = 9.5852e4; % in J/mol
cons_d1_wo_c = nu_d1 * exp(-(E_d1 / (R * theta))); % cons_d1_wo_c=cons_d1 without c
cons_d2_wo_c = nu_d2 * exp(-(E_d2 / (R * theta))); % cons_d2_wo_c=cons_d2 without c
cons_r_wo_c = nu_r * exp(-(E_r / (R * theta))); % cons_r_wo_c=cons_r without c
%*****************************
% Defining Dependent variables
%*****************************
q_d1 = DV(1);
q_d2 = DV(2);
q_r = DV(3);
c_small = DV(4);
%*****************************
% Calculate the constants including c
%*****************************
cons_d1_with_c = c_small.*cons_d1_wo_c;
cons_d2_with_c = c_small.*cons_d2_wo_c;
cons_r_with_c = c_small.*cons_r_wo_c;
%*****************************
% Calculate the derivatives of DVs and Extra variables defination
%*****************************
der_q_d1_def = cons_d1_with_c .* (1 - q_d1); % DE of q_d1
der_q_d2_def = cons_d2_with_c .* (1 - q_d2); % DE of q_d2
q_d = (q_d1 + q_d2)/2; % expr of q_d
der_q_r_def = cons_r_with_c .* (1 - q_r); % DE of q_r
d_c = d_c_0*exp(-(gamma_c*q_r)); % expr of d_c
k_small = (k01*(1-((q_d1+q_d2)/2))+k02*(1-q_r))*exp(-(E_k / (R * theta))); % expr of k_small
der_c_small_def = ((-k_small.*c_small)/rho_0); % expression for DE of c_dot_small
%*****************************
% Defining Function defination
%*****************************
dDVdIV = [der_q_d1_def;
der_q_d2_def;
der_q_r_def;
der_c_small_def];
% dDVdIV=@(DV,IV)[der_q_d1_def;der_q_d2_def;der_q_r_def;der_c_small_def];
%*****************************
end
  2 Comments
Sam Chak
Sam Chak on 29 Aug 2023
You are welcome, @S Ashish. If you find the solution helpful, please consider clicking 'Accept' ✔ the answer to close the issue when the problem is resolved. Thanks a bunch!

Sign in to comment.

More Answers (0)

Products


Release

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!