How to use 5 function coupled each other using ODE45? it is possible?
1 view (last 30 days)
Show older comments
cindyawati cindyawati
on 20 Jun 2023
Commented: cindyawati cindyawati
on 20 Jun 2023
I have a coupled differential equation. I'm confused why my M3, O, and P values are 0. Even though the initial conditions M2, M3, O and P are 0 but only M2 has a value. Is there something wrong with the function?
function CM1 = mymode (t,M1,M2,M3,O,P)
M1= 10;
M2 = 0;
M3 = 0;
O = 0;
P=0;
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(5,1);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
[t,M1,M2,M3,O,P] = ode45(@mymode, [0,100],[0,0.01])
plot (t,M1,M2,M3,O,P)
4 Comments
Torsten
on 20 Jun 2023
Edited: Torsten
on 20 Jun 2023
This is a Runge-Kutta-4 code for your problem. Try to understand how "runge_kutta_RK4" works on your system of equations to do better next time.
tstart = 0.0;
tend = 100.0;
dt = 0.01;
T = (tstart:dt:tend).';
Y0 = [10 0 0 0 0];
f = @myode;
Y = runge_kutta_RK4(f,T,Y0);
M1 = Y(:,1);
M2 = Y(:,2);
M3 = Y(:,3);
O = Y(:,4);
P = Y(:,5);
figure
subplot(3,1,1)
plot(T,M1),grid, title('M1')
subplot(3,1,2)
plot(T,M2),grid, title('M2')
subplot(3,1,3)
plot(T,M3),grid, title('M3')
figure
subplot(2,1,1)
plot(T,O),grid, title('O')
subplot(2,1,2)
plot(T,P),grid, title('P')
function Y = runge_kutta_RK4(f,T,Y0)
N = numel(T);
n = numel(Y0);
Y = zeros(N,n);
Y(1,:) = Y0;
for i = 2:N
t = T(i-1);
y = Y(i-1,:);
h = T(i) - T(i-1);
k0 = f(t,y);
k1 = f(t+0.5*h,y+k0*0.5*h);
k2 = f(t+0.5*h,y+k1*0.5*h);
k3 = f(t+h,y+k2*h);
Y(i,:) = y + h/6*(k0+2*k1+2*k2+k3);
end
end
function CM1 = myode (~,MM)
M1 = MM(1);
M2 = MM(2);
M3 = MM(3);
O = MM(4);
P = MM(5);
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(1,5);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
Accepted Answer
Alan Stevens
on 20 Jun 2023
Better like this:
MM0 = [10, 0, 0, 0, 0];
tspan = [0 100];
[t, MM] = ode15s(@mymode, tspan,MM0);
M1 = MM(:,1);
M2 = MM(:,2);
M3 = MM(:,3);
O = MM(:,4);
P = MM(:,5);
figure
subplot(3,1,1)
plot(t,M1),grid, title('M1')
subplot(3,1,2)
plot(t,M2),grid, title('M2')
subplot(3,1,3)
plot(t,M3),grid, title('M3')
figure
subplot(2,1,1)
plot(t,O),grid, title('O')
subplot(2,1,2)
plot(t,P),grid, title('P')
function CM1 = mymode (~,MM)
M1 = MM(1);
M2 = MM(2);
M3 = MM(3);
O = MM(4);
P = MM(5);
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(5,1);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
3 Comments
Alan Stevens
on 20 Jun 2023
Yes, you can also use ode45 - it just uses more points over the time span.
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!