How to use 5 function coupled each other using ODE45? it is possible?

1 view (last 30 days)
I have a coupled differential equation. I'm confused why my M3, O, and P values are 0. Even though the initial conditions M2, M3, O and P are 0 but only M2 has a value. Is there something wrong with the function?
function CM1 = mymode (t,M1,M2,M3,O,P)
M1= 10;
M2 = 0;
M3 = 0;
O = 0;
P=0;
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(5,1);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
[t,M1,M2,M3,O,P] = ode45(@mymode, [0,100],[0,0.01])
plot (t,M1,M2,M3,O,P)
  4 Comments
Torsten
Torsten on 20 Jun 2023
Edited: Torsten on 20 Jun 2023
This is a Runge-Kutta-4 code for your problem. Try to understand how "runge_kutta_RK4" works on your system of equations to do better next time.
tstart = 0.0;
tend = 100.0;
dt = 0.01;
T = (tstart:dt:tend).';
Y0 = [10 0 0 0 0];
f = @myode;
Y = runge_kutta_RK4(f,T,Y0);
M1 = Y(:,1);
M2 = Y(:,2);
M3 = Y(:,3);
O = Y(:,4);
P = Y(:,5);
figure
subplot(3,1,1)
plot(T,M1),grid, title('M1')
subplot(3,1,2)
plot(T,M2),grid, title('M2')
subplot(3,1,3)
plot(T,M3),grid, title('M3')
figure
subplot(2,1,1)
plot(T,O),grid, title('O')
subplot(2,1,2)
plot(T,P),grid, title('P')
function Y = runge_kutta_RK4(f,T,Y0)
N = numel(T);
n = numel(Y0);
Y = zeros(N,n);
Y(1,:) = Y0;
for i = 2:N
t = T(i-1);
y = Y(i-1,:);
h = T(i) - T(i-1);
k0 = f(t,y);
k1 = f(t+0.5*h,y+k0*0.5*h);
k2 = f(t+0.5*h,y+k1*0.5*h);
k3 = f(t+h,y+k2*h);
Y(i,:) = y + h/6*(k0+2*k1+2*k2+k3);
end
end
function CM1 = myode (~,MM)
M1 = MM(1);
M2 = MM(2);
M3 = MM(3);
O = MM(4);
P = MM(5);
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(1,5);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end

Sign in to comment.

Accepted Answer

Alan Stevens
Alan Stevens on 20 Jun 2023
Better like this:
MM0 = [10, 0, 0, 0, 0];
tspan = [0 100];
[t, MM] = ode15s(@mymode, tspan,MM0);
M1 = MM(:,1);
M2 = MM(:,2);
M3 = MM(:,3);
O = MM(:,4);
P = MM(:,5);
figure
subplot(3,1,1)
plot(t,M1),grid, title('M1')
subplot(3,1,2)
plot(t,M2),grid, title('M2')
subplot(3,1,3)
plot(t,M3),grid, title('M3')
figure
subplot(2,1,1)
plot(t,O),grid, title('O')
subplot(2,1,2)
plot(t,P),grid, title('P')
function CM1 = mymode (~,MM)
M1 = MM(1);
M2 = MM(2);
M3 = MM(3);
O = MM(4);
P = MM(5);
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(5,1);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
  3 Comments
Alan Stevens
Alan Stevens on 20 Jun 2023
Yes, you can also use ode45 - it just uses more points over the time span.

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!