'Matlab says that the problem is at (t), i want to use ode45

2 views (last 30 days)
function dxdt = odefun (t,x)
dxdt = zeros(3,1);
dxdt(1)= -(8/3)*x(1)+x(2)*x(3);
dxdt(2)= -10*x(2)+10*x(3);
dxdt(3)= -x(3) -x(2)*x(1)+28*x(2);
end

Answers (2)

Bora Eryilmaz
Bora Eryilmaz on 7 Dec 2022
Edited: Bora Eryilmaz on 7 Dec 2022
As long as you call your function the right way, it should work:
ode45(@odefun, [0 10], [1 1 1])
function dxdt = odefun (t,x)
dxdt = zeros(3,1);
dxdt(1)= -(8/3)*x(1)+x(2)*x(3);
dxdt(2)= -10*x(2)+10*x(3);
dxdt(3)= -x(3) -x(2)*x(1)+28*x(2);
end

Sam Chak
Sam Chak on 7 Dec 2022
Guess you probably want to view the Lorenz attractor.
[t, x] = ode45(@odefun, [0 100], [1 1 1]);
plot3(x(:,1), x(:,2), x(:,3))
az = 90;
el = 0;
view(az, el)
function dxdt = odefun(t, x)
dxdt = zeros(3,1);
dxdt(1) = - (8/3)*x(1) + x(2)*x(3);
dxdt(2) = - 10*x(2) + 10*x(3);
dxdt(3) = - x(3) - x(2)*x(1) + 28*x(2);
end

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!