How to automatically obtain shape coordinates

3 views (last 30 days)
I have an image (attached) that I want to crop. But to crop them I always need to manually take the center "coordinates" (index) of the center of each black box in the red circle. I need to automate it but I don't know where to start.

Answers (3)

Matt J
Matt J on 24 Jan 2022
Edited: Matt J on 24 Jan 2022
Perhaps as follows
load Image
B=medfilt2(A,[5,5])<60;
B=bwareafilt(B,5) & ~bwareafilt(B,1);
T=regionprops('table',B,'Centroid'); %square centroids
LT=min(T.Centroid); %%left top corner
SZ=max(T.Centroid)-LT+1; %size fo box
A=imcrop(A,[LT,SZ]); %ignore projective warping
imshow(A,[])
  2 Comments
Jacob Ebilane
Jacob Ebilane on 24 Jan 2022
Kind of close to what I need, but I need 4 points because I have to straighten it using a program I found. I could use LT to be set as my first point, but I'd need the location of the other 3 boxes.
Matt J
Matt J on 25 Jan 2022
You have the 4 points in T.Centroid.

Sign in to comment.


yanqi liu
yanqi liu on 25 Jan 2022
clc; clear all; close all;
img = imread('https://ww2.mathworks.cn/matlabcentral/answers/uploaded_files/871715/uno.png');
if ndims(img) == 3
img = rgb2gray(img);
end
bw = imbinarize(img,'adaptive','ForegroundPolarity','dark','Sensitivity',0.4);
bw2 = ~bw;
bw2 = imopen(bw2, strel('square', 5));
bw3 = imclose(bw2, strel('line', size(bw2,1), 90));
bw4 = imclose(bw2, strel('line', size(bw2,2), 0));
% find left and right
[L,num] = bwlabel(bw3);
stats = regionprops(L);
rects = cat(1, stats.BoundingBox);
ind1 = find(rects(:,4)>size(bw2,1)*0.8);
[~,ind2] = min(rects(ind1,1));
[~,ind3] = max(rects(ind1,1));
bw3 = L==ind1(ind2) | L == ind1(ind3);
% find top and bottom
[L,num] = bwlabel(bw4);
stats = regionprops(L);
rects = cat(1, stats.BoundingBox);
ind1 = find(rects(:,3)>size(bw2,2)*0.8);
[~,ind2] = min(rects(ind1,2));
[~,ind3] = max(rects(ind1,2));
bw4 = L==ind1(ind2) | L == ind1(ind3);
% make square
bw5 = logical(bw3 + bw4);
bw5 = imfill(bw5, 'holes');
[r,c] = find(bw5);
rect = [min(c) min(r) max(c)-min(c) max(r)-min(r)];
% get 4 square
figure; imshow(img);
hold on; rectangle('position', rect, 'EdgeColor', 'g', 'LineWidth', 2)

Image Analyst
Image Analyst on 25 Jan 2022
Here is yet another way:
grayImage = imread('uno.png');
subplot(2, 2, 1);
imshow(grayImage, []);
title('Original Image.')
if ndims(grayImage) == 3
grayImage = rgb2gray(grayImage);
end
topHatImage = imbothat(grayImage, true(51));
subplot(2, 2, 2);
imshow(topHatImage, [])
title('Top Hat Filtered Image.')
impixelinfo;
mask = topHatImage > 60; %~imbinarize(grayImage,'adaptive','ForegroundPolarity','dark','Sensitivity',0.4);
mask = imfill(mask, 'holes');
props = regionprops(mask, 'Area')
allAreas = sort([props.Area])
mask = bwareafilt(mask,[400, 7000]);
mask = bwconvhull(mask);
subplot(2, 2, 3);
imshow(mask, []);
title('Mask.')
props = regionprops(mask, 'BoundingBox')
croppedImage = imcrop(grayImage, props.BoundingBox);
subplot(2, 2, 4);
imshow(croppedImage, []);
title('Cropped Image.')
It could be made faster if you started with a good image, like one from a scanner instead of a poorly lit paper and a mobile phone camera.

Categories

Find more on Image Processing Toolbox in Help Center and File Exchange

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!